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Chapter 1

Introduction

Turbulent flows control the behavior of many applications relevant to Sandia’s mission areas, in-
cluding combustion and reacting flows, wind energy, atmospheric re-entry, and aerodynamics.
Given turbulence’s additional ubiquity in flows of interest to science and engineering generally,
much work has been focused on methods to predictively simulate it. Three main simulation cat-
egories exist. The first is direct numerical simulation (DNS) which resolves all of the energy
containing motions down to the scales at which viscosity completely dissipates the turbulent fluc-
tuations. DNS is highly accurate and can be verified using mesh resolution studies, but its accuracy
comes at high computational cost. As such, DNS is typically only applied to simple flows in canon-
ical geometries as part of scientific investigations to better characterize turbulence.

At the opposite end of the spectrum from DNS lies the Reynolds Averaged Navier Stokes
(RANS) method which only computes the mean velocity field and models the effects of fluctu-
ations. While often amenable to solution verification via mesh refinement, RANS models also
introduce significant but uncharacterized errors. Despite the uncertainty in the solutions, RANS
simulations are the workhorse of engineering practice due to their low cost. Large-eddy simulation
(LES) fills the gap between DNS and RANS by resolving the large-scale motions while modeling
the nominally universal small-scales of turbulence. While the cost is higher than RANS, LES can
theoretically be applied at any desired scale such that the cost of a simulation can be determined
based on the required scales to be resolved.

Despite the theoretical construction of LES, practically speaking it has been much more widely
used as a tool for scientific investigation rather than engineering analysis. When highly resolved,
LES models need account for little energy, meaning most of the important flow structures are
resolved. Indeed, even mesh refinement tends to work for these cases even though increasing
amounts of turbulent energy are present. The cost of the simulations, however, scales almost as
strongly with the Reynolds number of DNS. As meshes become coarser and more is required of
LES models, in many cases the models as presently constructed do not sufficiently represent the
missing turbulence to be useful for engineering work. The introduction of unstructured meshes
and dissipative numerical methods needed for technological configurations introduce further un-
certainty in the results, and established approaches to solution verification founder.

The objective of this work is to investigate the efficacy of using calibration strategies from
Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods
are for engineering LES, uncertainty from numerical aspects of the model must also be quantified.
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The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such
that the cost could be minimized given an accuracy prescribed by an engineering need. Realization
of this goal would enable LES to serve as a predictive simulation tool within the engineering design
process.

This report describes the research efforts taken to determine how and if UQ calibration can lead
to engineering LES. Chapter 2 describes how the theoretical foundations of LES can given rise to
a means to calibrate LES models from DNS data. It also demonstrates that while the physical
constants can be adjusted, numerical errors account for the majority of the uncertainty when using
coarse meshes. Turning the problem around, Chapter 3 provides a calibration strategy based on
engineering objectives. While the LES models can be calibrated, trade-offs in fidelity of multiple
quantities of interest mean that all important flow measures cannot be equally well evaluated due
to numerical and model form errors. To better understand numerical errors, Chapter 4 outlines a
solution verification study of the numerical operators used in LES to show how variation of the
discretization method can lead to very different flow predictions. Concluding the UQ calibration
piece of the work, a mesh dependent model is calibrated in Chapter 5, which also investigates
model form error.

While understanding all these various aspects of LES is important, to impact engineering work
tools are needed with advanced physics models to simulate meaningful systems. Chapter 6 de-
scribes one such innovation in which understanding the behavior of a combustion model can im-
pact how it predicts pollutant formation. As software tools are also needed, Chapter 7 overviews
several technological improvements made to the code Nalu which make it vehicle for collaboration
between Sandia, academia, and industry. While flow solvers are part of the technology for lever-
aging these new methods, management of calibration and forward UQ studies is error-prone and
time-consuming. To mitigate these issues, this work developed a novel UQ management software
package called Guru to facilitate organization and execution of coordinated LES solves. The com-
bination of these new methodologies with open source software packages better positions Sandia
to help transition LES from a resource for obtaining scientific knowledge to a tool suitable for
application to engineering problems.
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Chapter 2

Uncertainty Quantification in LES of
Channel Flow

Abstract

In this chapter we present a Bayesian framework for estimating joint densities for Large-Eddy
Simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence
Direct Numerical Simulation (DNS) data. The framework accounts for noise in the independent
variables and we present alternative formulations for accounting for discrepancies between model
and data. To generate probability densities for flow characteristics, posterior densities for sub-grid
scale model parameters are propagated forward through LES of channel flow and compared to
DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters
have an explicit filter width dependence and are highly correlated, and this work suggests what
type of training data can lead to the most successful predictions.
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2.1 Introduction

Large-eddy simulation (LES) is a method to compute the solutions to turbulent flows by resolving
the larger flow features while modeling the smaller (sub-grid) scale fluctuations [66]. Mathemati-
cally, these two scales are separated by use of a low-pass filter, but most LES formulations do not
account for the filtering operation explicitly. However, it is not completely understood yet how
to perform such filtering in practical LES calculations, particularly because numerical errors can
pollute the solution [33, 42].

Several efforts have addressed this topic. Gullbrand and Chow [22] considered a dynamic
reconstruction model to estimate the sub-grid stress (SGS) by approximately inverting an explicit
filtering operator to compute part of it from the resolved turbulent flow field. As an alternative,
Bose and Moin [5] considered directly modifying the SGS model filter width in order to obtain
“mesh-independent" LES results. Moser and co-workers [45, 78] took a different strategy in which
LES SGS model form and parameters were determined by applying linear stochastic estimation
to channel flow in a technique known as optimal LES. Other approaches which explicitly bring
information regarding the filter into the LES formulation involve boundary conditions. Previous
studies have considered the effect of explicit filtering on boundary conditions for the Burgers’
equation [76, 4] and the Navier-Stokes equations [71, 3], with the work of Bhattacharya et al [3]
being in the context of optimal LES.

There have been several prior efforts which used Bayesian [7] and other machine learning tech-
niques to estimate uncertainties in turbulence simulations with particular emphasis on turbulence
models. To the best of our knowledge, the first attempt at deriving LES closures from resolved flow
fields using machine learning strategies was the optimal LES formulation [78] which used linear
stochastic estimation [1]. Decompositions of the Reynolds-Averaged Navier-Stokes (RANS) tur-
bulent stress tensor have been considered as uncertain parameters and their effect on resulting
RANS solutions has been quantified [49, 50, 16]. For example, the principal stress axes were com-
puted and perturbed to estimate the effect of structural uncertainty of turbulence models on flow
realizations. The effects of uncertain boundary conditions have been examined using the Burgers’
equation [54, 55] and the Navier-Stokes equations [9]. Bayesian estimation of the effects of the
combustion models in LES has also been carried out [59], while in cold flow isotropic turbulence,
Lucor et al [38] assumed a distribution for the constant in the Smagorinsky model following a
Polynomial Chaos Expansion (PCE) which was sampled to compute the PCE of different scales
of turbulent motion. Optimization-based calibration methods have also been applied to RANS
models [36]. Other recent efforts have focused on using adjoint methods to assess model sensitiv-
ities [15, 79]. A review article by Najm [47] provides a discussion on uncertainty quantification
techniques, with emphasis on PCEs, in computational fluid dynamics.

The purpose of this paper is twofold: 1) we propose a framework for the estimation of uncer-
tainties in the parameters for sub-grid scale turbulence models followed by a forward Uncertainty
Quantification (UQ) study to examine the predictive capabilities of the LES approach given the
calibrated set of parameters, and 2) we assess the feasibility of using directly filtered turbulence
information to contribute to existing LES SGS models. In this context, we plan to investigate how
calibrated LES models fare in simulations with different physical parameters, numerical methods,
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and meshes.

Figure 2.1 shows a schematic of this framework, consisting of two connected workflows for
Parameter Estimation and Forward UQ. The joint probability density for input parameters is es-
timated in a Bayesian framework. The Bayesian context provides a flexible framework to handle
heterogeneous information and allows for sequential updates of posterior distributions as the prior
information is revised. Both the model error em and the measurement error ed can be embedded in
the parameter estimation. The computational model, f , is based on Sandia’s FUEGO LES software
suite [44]. In the context of this work, we explore the predictive capabilities of f in a channel flow
configuration, when employing the calibrated parameters for the ksgs sub-grid scale model. We
note that Bayesian estimation has been successfully used to infer model parameters within multi-
scale settings in other applications, such as molecular dynamics [62, 67], porous media flows [8],
and Carbon cycle models [18, 61].

Parameter
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Forward UQ

Bayesian

Framework

Measurement Model

z = m(x; ✓) + ✏m + ✏d

z

x

Data (D)

✓

p
d
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Computational Model
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d
f(
y
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Figure 2.1: Schematic of parameter estimation and forward UQ workflows.

This paper is organized as follows. Section 2.2 provides a description of the LES formulation.
Section 2.3 presents the Bayesian framework for model calibration. Section 2.4 describes propa-
gation of uncertainties from calibrated model parameters to relevant quantities of interest in LES
of channel flow. We end with conclusions in Section 2.5. The methods employed in this paper are
part of Sandia’s software package UQTk v3.0.1

1http://www.sandia.gov/UQToolkit
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2.2 Large Eddy Simulation

The LES field is formally defined as a low-pass filtered turbulent flow field, i.e.

ũi(x) ⌘
Z

W
ui(y)G(x�y;D)dv, (2.1)

where x and y are coordinate vectors in R3 with dv = dy1 dy2 dy3, ui is the i-th velocity compo-
nent, ũi is the filtered or LES ith velocity component, G is a convolution kernel which preferen-
tially removes small-scale energy from ui. Here, “small-scale” is defined relative to the parametric
dependence of G on a length scale D, denoting the filter width. If

R
W Gdv = 1 and it satisfies as-

sumptions of isotropy, homogeneity, and continuous differentiability, the order of convolution and
differentiation can be exchanged such that the equations governing the LES field as determined
from the incompressible Navier-Stokes equations are

∂r ũi

∂ t
+

∂r ũiũ j

∂x j
= �∂ P̃

∂x
+n

∂

2ũi

∂x j∂x j
+

∂ti j

∂x j
, (2.2)

∂ ũ j

∂x j
= 0. (2.3)

where n is the kinematic viscosity and P̃ is the filtered pressure. While similar to the Navier-Stokes
equations, the LES equations differ through the inclusion of the SGS tensor

ti j = r ũiũ j �rguiu j. (2.4)

Determining closure models for this term, particularly in complex engineering flows, remains an
active area of research. We also note that when the assumptions on the filter are violated, as in
wall-bounded flows, commutation error is incurred because differentiation and filtering no longer
exactly commute.

Of relevance to our current effort, the SGS model not only expicitly depends on the convolution
kernel G, such that given the kernel and a turbulent flow field, it can be exactly determined. This
mathematical relationship between the “true" flow field and the LES SGS tensor enables our goals
of calibration, uncertainty propagation, and error assessment. Calibration can be achieved by filter-
ing a direct numerical simulation (DNS) to exactly construct the terms present in the SGS model,
from which model constants can be inferred. Given these constants, with quantified uncertainty,
the error associated with the ideal LES model, based on the mathematics of continuous fields and
filtering only, can be propagated forward into new solutions. The remaining error can be attributed
to sources of uncertainty not present in the ideal LES.

2.2.1 ksgs Turbulence Model

The transport equation for the LES model for the subgrid scale turbulent kinetic energy, ksgs, is
given by Yoshizawa [87, 88]

Z

V

∂ r̄ksgs

∂ t
dv+

Z

∂V
r̄ksgsũ jn jds =

Z

∂V

µk

sk

∂ksgs

∂x j
n jds+

Z

V

�
Psgs

k �Dsgs
k
�

dv (2.5)
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The production and dissipation of turbulent kinetic energy, Psgs
k and Dsgs

k , are given by

Psgs
k =

✓
2µt

✓
S̃i j �

1
3

S̃kkdi j

◆
� 2

3
r̄ksgs

di j

◆
∂ ũi

∂x j
(2.6)

and

Dsgs
k = C

e

(ksgs)3/2

D
(2.7)

After expanding the parenthesis in Eq. (2.6), the production term can be written as

Psgs
k = 2µt

✓
S̃i j

∂ ũi

∂x j
� 1

3
(— · ũ)2

◆
� 2

3
r̄ksgs (— · ũ) (2.8)

For incompressible flows, with — · ũ = 0, the production term reduces to

Psgs
k = 2µt S̃i j

∂ ũi

∂x j
(2.9)

The filtered strain rate tensor is written as:

S̃i j =
1
2

✓
∂ ũi

∂x j
+

∂ ũ j

∂xi

◆
(2.10)

and the product S̃i j
∂ ũi
∂x j

can be further expanded as follows
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+

1
2 Â

i
Â

j

∂ ũ j

∂xi

∂ ũi

∂x j
(2.11)

Further, the subgrid turbulent viscosity is modeled as

µt = C
µ

e

D
p

ksgs (2.12)

2.3 Model Calibration

We employ a probabilistic approach, specifically a Bayesian framework, to compute posterior
probabilities for the ksgs model parameters, C

µ

e

and C
e

, introduced in Eqs. (3.2) and (3.5). In the
Bayesian approach the posterior probability density for the model parameters is given by

p(q |D) = LD(q)p(q)/p(D) (2.13)

Here, p(q) and p(q |D) are the prior and posterior probability densities, respectively, for model
parameters q . These densities represent our knowledge about these parameters before and after
learning from the data D . The likelihood function LD(q) = p(D |q) is the likelihood of the data
D for a particular instance of q . The denominator in Eq. (3.7), p(D), is the “model evidence”,
efectively a constant normalizing factor, and not relevant for the calculations presented in this
paper as it is independent of q .
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2.3.1 Calibration Data

For this study we employ the Johns Hopkins University (JHU) turbulence database [52, 35] of
forced isotropic turbulence in a periodic cube. Specifically, this dataset results from a DNS using
10243 grid nodes overlaying a cube with sides of length L = 2p . The Taylor-scale Reynolds
number, Re

l

, for this simulation is approximately 433. The simulation covers a non-dimensional
time range of 2.048 with solution files saved every 10 time steps, or 2⇥10�3. For the current study
we considered the DNS data at times t = {0,0.1,0.2, . . . ,2.0}.

Filtered velocity values are computed from the DNS data using a top-hat filter of width D in
all coordinate directions. The sub-grid scale kinetic energy is then computed as ksgs = K̃ � Kres,
where K̃ = ]1

2uiui is the kinetic energy per unit mass and Kres = 1
2 ũiũi is its “resolved” component,

computed using the filtered values.

The boundary integrals in Eq. (3.1) are statistically zero in a periodic configuration,

Z

∂V
r̄ksgsũ jn jds =

Z

∂V

µk

sk

∂ksgs

∂x j
n jds ⌘ 0. (2.14)

The remaining terms in Eq. (3.1) can be written in compact form as

fk(t;D) = C
µ

e

fP(t;D)�C
e

fD(t;D) (2.15)

where

fk(t;D) =
Z

V

∂ r̄ksgs

∂ t
dv, fD(t;D) =

Z

V

ksgs3/2

D
dv,

fP(t;D) =
Z

V
D
p

ksgsS̃i j
∂ ũi

∂x j
dv (2.16)

Spatial derivatives in the integrand for term fP , in Eq. (2.16), were computed at each time
instant using second-order centered finite differences. For fk, time derivatives were computed
using centered finite differences using the data from solution files immediately adjacent to the
corresponding time stamp. In addition to the dependence on time, the terms in Eq. (2.15) also
depend on the filter width D.

Figure 2.2 shows slices through the DNS field in the left column. These slices correspond to
planes perpendicular to the coordinate directions and centered at x = y = z = p/2. The top, middle,
and bottom rows show the u, v, and w velocity components, respectively. The right column in this
figure shows the corresponding filtered velocity components.

Figure 2.3 shows ksgs in an x�const slice (left column) and y�const slice (right column),
centered at the same point as in Fig. 2.2. The dependence of ksgs on the filter width is evident from
this figure, as larger D values lead to more diffuse features for the filtered quantities.
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Figure 2.2: Snapshot of u, v, and w velocity components: DNS data (left column) and filtered data
(right column) at t = 0.4 for a filter size D = L/32.

Figure 2.4 shows the values of fk, fP , and fD corresponding to the solution data considered in
this study.The time derivative of the overall sub-grid scale turbulent kinetic energy, fk varies around
zero, and shows little correlation (image not shown) with the production and dissipation terms. In
this configuration, the production and dissipation terms show a high degree of correlation and their
magnitude depends on the filter width. This is to be expected in the forced isotropic turbulence
configuration where energy is continuously injected to keep the total kinetic energy constant.

2.3.2 Likelihood Construction

In the Bayesian framework, LD(q) is the likelihood of observing the data D for an instance of
the model parameters q at specific locations for the independent variables x. In this context q =
{C

µ

e

,C
e

}, D consists of the values z = { fk,i|i = 1, . . . ,Nt} while x = { fP , fD}. In general, the
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Figure 2.3: Snapshots of
p

ksgs field at t = 0.4 for filter sizes D = L/32 (top row) and D = L/16
(bottom row).

discrepancy between model predictions and the data can be formalized as [68]

z = m(x;q)+ ez (2.17)

Here, m(x;q) = C
µ

e

fP �C
e

fD and ez is the discrepancy between the data and the model, i.e. a
consequence of the model only being an approximation of the true process and any imperfections
in the measurement process.

In the standard approach, x is a vector of observable quantities that are known and fixed
throughout the analysis. In situations, such as this work, where the independent variables x also
suffer due to data collection error, one needs to consider this error when inferring the model param-
eters q . The new compound discrepancy model can be formulated as a classical error-in-variables
model [12]

z = m(xa;q)+ ez

xo = xa + ex (2.18)

Here, xa and xo are the actual and observed, respectively, values for the independent variable x. For
this problem, we have a set of Nt observations for xo, { fP,i, fD,i|i = 1, . . . ,Nt}.

We formulate a Bayesian approach to infer the values for model parameters q = {C
µ

e

,C
e

}, the
actual values for the latent variables xa = { f a

P
, f a

D
}, as well as for other parameters for the error
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Figure 2.4: Top frame: fk; Bottom frame: fP and fD (bottom frame) for several filter sizes D.

terms ez and ex. In the context of this paper, xa are regarded as unknown constants. The Bayes
formula can be written as

p(q ,q

e,z,q e,x,xa|z,xo) µ p(z|q ,q

e,z,q e,x,xa,xo)⇥
p(q ,q

e,z,q e,x,xa|xo) (2.19)

Here q

e,z is the vector of parameters defining ez and q

e,x is the vector of parameters defining ex,
and xo = {( fP,i, fD,i)|i = 1, . . . ,Nt}. Given the dependencies in Eq. (2.18), the likeliihood can be
written as

p(z|q ,q

e,z,q e,x,xa,xo) = p(z|q ,q

e,z,xa) (2.20)

We further assume that {q ,q

e,z} and {q

e,x,xa} are a priori independent and write the prior as

p(q ,q

e,z,q e,x,xa|xo) = p(q ,q

e,z)p(q
e,x,xa|xo) (2.21)

The second term in the right-hand side of the above expression is further expanded using Bayes
theorem

p(q
e,x,xa|xo) µ p(xo|q e,x,xa)p(q

e,x,xa) (2.22)

The expressions in Eqs. (2.20-2.22) are then plugged back into Eq. (2.19), leading to

p(q ,q

e,z,q e,x,xa|z,xo) µ p(z|q ,q

e,z,xa)p(xo|q e,x,xa)| {z }
Likelihood

⇥

p(q ,q

e,z)p(q
e,x,xa)| {z }

Prior

(2.23)
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The assignment of a statistical model structure for ez and ex is not straightforward and entails
a significant degree of modeling. In this study we presume a bi-variate Gaussian discrepancy with
zero mean between the observed and the actual indepedent variables x,

ex ⇠ N(0,Sx), Sx =

✓
s

2
P

rPDsPsD

rPDsPsD s

2
D

◆
(2.24)

Given this assumption, q

e,x = {rPD ,sP ,sD}.

We employ two modeling approaches to estimate ez. In the first approach we consider a nor-
mally distributed error model ez,

ex ⇠ N(0,sz), q

e,z = {sz} (2.25)

Under this assumption, p(z|q ,q

e,z,xa) is approximated as a product of marginal densities using
fk,i collected at several time instants

p(z|q ,q

e,z,xa) =
Nt

’
i=1

1p
2psz

exp
✓

�
( fk,i �m(xa;q))2

2s

2
z

◆
(2.26)

while p(xo|q e,x,xa) is given by

p(z|q ,q

e,z,xa) =
1

(2p|Sx|)Nt

Nt

’
i=1

exp
�
�(xa � xoi)

T S�1
x (xa � xoi)

�
(2.27)

Here, the dependence on the filter width was dropped to simplify the notation. One setback with
this approach is that the explicit model error term is now part of the calibrated model, i.e. the
evolution of ksgs is now governed by a right-hand side that includes a standard normal random
variable in addition to the two terms shown in Eq. (2.15).

The second approach follows Sargsyan et al [68] who suggest embedding the model error
terms in the model components. By embedding the error model within the components themselves,
the model predictions automatically contain all proposed errors without the need to specify external
error terms. We begin by recasting the model constants as random variables parameterized by a1
and a2, respectively,

C
µ

e

= C
µ

e

(a1), C
e

= C
e

(a2) (2.28)

Here, a1 and a2 are parameter vectors that now need to be estimated. This effectively re-casts
the calibration problem into one of estimating densities of q = (a1,a2) such that the forward-
propagated PDFs of C

µ

e

and C
e

are consistent with select statistics of fk. In this framework, the
data model is fk = C

µ

e

(a1) fP �C
e

(a2) fD where ez has been subsumed into the random model
ansatz for C

µ

e

and C
e

.

For this approach we presume that C
µ

e

and C
e

are random variables with finite variance and we
will adopt a Polynomial Chaos expansion (PCE) [19, 10] to represent these (now random) model
parameters. A brief description of PCE is presented below. For an in-depth description, the reader
is referred to a series of publications on this topic [80, 19, 30, 83].
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Given a probability space (W,S ,P), where W is a sample space, S is a s -algebra on W, and
P is a probability measure on (W,S), we define a germ x = {x1, . . . ,xn} : W ! Xn ⇢ n where
the {xi}n

i=1 are a set of independent random variables, and Xn is the support of the density, that
is the set where the probability density of the germ is non zero. The xi are required to satisfy the
constraint that their density is uniquely determined by their moments [17], a requirement that is
satisfied by a range of standard random variables, e.g., standard normals, and uniforms. It can
the be shown that any random variable X 2 L2(W,S(x ),P), with S(x ) being the sigma algebra
generated by the chosen germ, can be written as the Polynomial Chaos expansion (PCE)

X = X(x ) =
•

Â
k=0

XkYk(x ). (2.29)

Here Yk are multivariate polynomials, that are products of univariate polynomials, Yk(x ) = Yk1(x1)Yk2(x2) . . ..
In a practical computational context, for a given dimensionality n, one truncates the PCE according
to a desired polynomial order p. The number of terms in the resulting finite PCE

X(x ) ⇡
P�1

Â
k=0

akYk(x ) (2.30)

is given by P = (n+ p)!/n!p!.

The univariate expansion polynomials correspond to a given choice of distribution for the xi
and are orthogonal with respect to the density of the random variable. In general, popular choices
for (x ,Y) pairs are uniform RVs with Legendre polynomials or normal RVs with Hermite polyno-
mials.

We employ Hermite-Gauss PCEs to represent C
µ

e

and C
e

as

C
µ

e

= Â
k

a1,kYk(x ), C
e

= Â
k

a2,kYk(x ). (2.31)

Here x = {x1, . . . ,xn} is a vector of standard normal random variables, while Yk(x ) = Yk1(x1) · · ·Ykn(xn)
are multivariate Hermite polynomials, orthogonal with respect to the density of the standard nor-
mal random variables. To illustrate the functional form representation via PCEs we employ first
order expansions for both parameters

C
µ

e

= a10 +a11x1

C
e

= a20 +a21x1 +a22x2 (2.32)

The first-order approximation essentially leads to multivariate normal distribution for C
µ

e

and C
e

for each instance of a1 and a2. A “triangular” form is adopted above in order to avoid rotational
symmetry. Additionally, both a21 and a22 are constrained to be positive to avoid positive/negative
symmetries. The likelihood, expressed as

LD(a1,a2) = p(z|a1,a2,xa), (2.33)
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is the multivariate density for z = { fk,i|i = 1, . . . ,Nt}. Generally, this multivariate density has been
shown to be degenerate [68]. Instead, we approximate this density with a product of marginal
densities corresponding to each data point

LD(a1,a2) =
Nt

’
i=1

p( fk,i|a1,a2,xa), (2.34)

Given that germs x1 and x2 in Eq. 2.32 are normal RV’s and that the model, in Eq. 2.15, is linear,
the marginal densities p( fk,i|a1,a2,xa) are normal, with mean and variance given by

µ f = a10 f a
P

�a11 f a
D

s

2
f =

�
a20 f a

P
�a21 f a

D

�2
+(a22 f a

D
)2 (2.35)

In this paper we will employ acronyms AEM (additive error model) for results based on the
likelihood shown in Eq. (2.26) and EEM (embedded error model) for likelihood in Eq. (2.34) based
on the approach described in the latter part of this section.

2.3.3 Prior Construction

A result of the present work is that the data presented in Section 2.3.1, in particular Fig. 2.4, does
not contain sufficient information to constrain both model constants C

µ

e

and C
e

. The production
and dissipation terms are nearly proportional to each other, while fk, showing the overall change in
ksgs, is small and fluctuates around 0. While it is to be expected that the balance of sub-grid kinetic
energy should preferentially inform the ratio rather than the values of the two constants, it was not
known a priori if the fluctuations in ksgs would be sufficient to estimate the parameter values. It
could be the case that the removal of the boundary flux terms is partially to blame, but it appears
as though the time-scale of the sub-grid kinetic energy variation relative to the time-scale of the
fluctuations in production and dissipation is also too small as in Fig. 2.4. With this observation,
and in the absence of additional data, it is clear that one needs additional regularization to constrain
the parameter estimation problem.

To this end, for the AEM approach, we choose independent Gaussian priors for the components
of q = {C

µ

e

,C
e

}, N (µ

pr
C

µ

e

,s

pr2

C
µ

e

) and N (µ

pr
C

e

,s

pr2

C
e

), centered at parameter values previously rec-
ommended in the turbulence modeling literature. The first set of values considered here is the one
recommended by Schumann [69] and denoted by subscript 1 below. The second set of values is
recommended by Yoshizawa [87, 88] and denoted by subscript 2 below

µ

pr
1 = {µ

pr
C

µ

e 1
,µ

pr
C

e 1
} = {0.0845,0.85}

µ

pr
2 = {µ

pr
C

µ

e 2
,µ

pr
C

e 2
} = {0.07,1.05}, (2.36)
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For the AEM, we also explore three sets of values values for the marginal standard deviations for
the prior densities, as follows

s

pr
1 = {s

pr
C

µ

e 1
,s

pr
C

e 1
} = {0.04,0.4}

s

pr
2 = {s

pr
C

µ

e 2
,s

pr
C

e 2
} = {0.02,0.2} (2.37)

s

pr
3 = {s

pr
C

µ

e 3
,s

pr
C

e 3
} = {0.01,0.1}

The sets of mean values provided in Eq. (2.36) are combined with the sets of marginal standard
deviations, in Eq. (2.37), to construct priors for several simulations, as outlined in Table 3.1.

For EEM we construct priors for q = {a1,a2} that resemble the above formulation. We first
set priors for the mean values of the two constants. Given the formulation proposed in Eq. (2.32),
the mean values for C

µ

e

and C
e

are given by

µC
µ

e

= a10, µC
e

= a20 (2.38)

We adopt independent Gaussian priors for these means, with the same values as the ones mentioned
above for the classical approach, in Eqs. 2.36 and 2.37. Further we truncate and re-scale these
densities so that

ppr(a10  0) = ppr(a20  0) = 0.

This ensures that the mean values for either C
µ

e

and C
e

remain positive. Additionally, we impose
conditions on the other a coefficients to ensure only a small probability that C

µ

e

and C
e

are less
than zero. We adopt a threshold value of 0.1% and impose

P(C
µ

e

< 0) < 10�3
, P(C

e

< 0) < 10�3 (2.39)

For C
µ

e

this condition leads to

a10 �3|a11| > 0 ! ppr(a11|a10) =
H (a10 �3|a11|)

2a10/3

where H is the Heaviside function. For C
e

, Eq. (2.39) leads to

ppr(a21,a22|a20) =
H (a20 �3

q
a

2
21 +a

2
22)

4pa

2
20/9

The prior for EEM parameters is then written as

ppr(q) = ppr(a10)⇥ ppr(a11|a10)⇥
ppr(a20)⇥ ppr(a21,a22|a20) (2.40)

The denominators in the conditional prior densities ppr(a11|a10) and ppr(a21,a22|a20) can push
both a10 and a20 towards the degenerate case a10 = a20 = 0. However, this is avoided by the
truncated normal densities imposed above for these two model parameters.
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2.3.4 Posterior Densities of ksgs Parameters

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the posterior proba-
bility density, p(q |D) in Eq. (3.7). MCMC is a class of techniques that allows sampling from
a probability density by constructing a Markov Chain that has the target density as its stationary
distribution [21]. In particular, we employ an adaptive Metropolis algorithm [23], which uses the
covariance of the previously visited chain states to find better proposal distributions, allowing the
exploration of posterior distributions in an efficient manner. We employ the Raftery-Lewis diag-
nostic [58] to determine when the MCMC samples converge to stationary posterior distributions.
We also test the MCMC samples via the Effective Sample Size [32] (ESS) to determine if there is
significant autocorrelation between chain samples.

Table 2.1: Setup for model calibration studies. µ

pr
1�2 are defined in Eq. (2.36) while s

pr
1�3 are

defined in Eq. (2.37).

Run Prior mean Prior St. Dev.
R1 µ

pr
1 s

pr
1

R2 µ

pr
2 s

pr
1

R3 µ

pr
1 s

pr
2

R4 µ

pr
2 s

pr
2

R5 µ

pr
1 s

pr
3

R6 µ

pr
2 s

pr
3

We start with results from the AEM approach presented in Section 2.3.2. Table 3.1 presents the
prior setup for the set of trials employed in this study. For each run, the filtered DNS data employed
in the calibration was generated using several choices for the filter width D = {L/64,L/32,L/16}.
Henceforth, results corresponding to a certain prior setup will employ a subscript corresponding
to the filter size used for the data, e.g. R13 employs the setup for R1 with filter size D = L/16,
while R32 employs the setup for R3 with filter size D = L/32. In order to maintain positivity
for the standard deviation sz we will actually work with logsz, and use an uniform prior for this
parameter. This is equivalent with using a Jeffrey’s prior for 1/sz.

Figure 2.5 shows marginal posterior PDFs for R32. The 1D marginal densities are shown in the
diagonal plots, while the contour plots show joint densities between C

µ

e

, C
e

, and s , respectively.
The narrow 2D joint density for the pair (C

µ

e

,C
e

) indicates a strong dependence between these
two parameters. On the other hand, the joint posterior densities between these parameters and the
standard deviation used in the likelihood construction, sz, suggest a weak dependence between the
error term standard deviation and the model parameters. The marginal PDF results based on other
filter sizes and/or other prior specifications (i.e. mean value, standard deviation) are qualitatively
similar to results shown in Fig. 2.5.

Figure 2.6 shows marginal posterior densities corresponding to parameters ai j that define the
models for C

µ

e

and C
e

in the EEM aproach. These densities were computed via Kernel Density
Estimate (KDE) [70, 72] using 5 ⇥ 106 MCMC samples. Parameters a10 and a20 that correspond
to the means of C

µ

e

and C
e

exhibit a joint distribution that is very similar to the joint distribution
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Figure 2.5: Joint posterior distribution for model parameters corresponding to R32 using AEM.
For this case the filtered DNS data employed a filter size D = L/32 and the setup for prior densities
given in Table 3.1 and Eqs. (2.36) and (2.37).

for these model constants observed in Fig. 2.5 for the AEM approach. The first order coefficients,
a11 and a21, corresponding to the first random variable, x1, also exhibit a strong dependence.
Other 2D joint distributions show little correlation between parameters ai j. It should be also noted
that conditions in Eq. (2.39) are reflected in some sharp boundaries observed for several 2D joint
posterior densities.

Figure 2.7 compares posterior densities for C
µ

e

and C
e

obtained with the AEM and EEM ap-
proaches. Each set of results is represented with five equally spaced contours. The results in this
figure, corresponding to the three filter widths for R3, show consistently narrower densities for the
AEM approach compared to EEM. For the former approach, the posterior densities for the model
parameters only partially explain the discrepancy between the model and the data, the remaining
contribution manifesting through the error terms in Eq. (2.17). For the EEM approach, the model
parameters are parameterized such that the output density is consistent with the spread in the data.
For this approach the discrepancy between the model, in this case the ksgs sub-grid model, and the
data is completely folded into the density of C

µ

e

and C
e

.
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Figure 2.6: Joint posterior distribution for EEM parameters ai j, corresponding to R32.

(a) R31 (b) R32 (c) R33

Figure 2.7: Comparison of joint posterior distribution for (C
µ

e

,C
e

), for AEM (red contours) and
EEM (black contours). For EEM, the posterior densities for (C

µ

e

,C
e

) are generated by sampling
the posterior densities of (a1,a2).
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Figure 2.8 shows the posterior mean and standard deviations based on marginal posteriors for
C

µ

e

. This figure show results for the three filter widths, discussed in Section 2.3.1, and prior model
specifications, provided in Table 3.1. For the AEM approach, the standard deviation s

Ps
C

µ

e

for
marginal posterior density of C

µ

e

, in Figs. 2.8a and 2.8b, is about half compared to the one corre-
sponding to its prior density. The corresponding results for the EEM approach, in Figs. 2.8(c,d),
show larger marginal standard deviations for both model constants compared to AEM. The pos-
terior mean µ

Ps
C

µ

e

is more impacted by the filter width compared to s

Ps
C

µ

e

, while at the same time
being less affected by the prior widths. Results corresponding to C

e

are qualitatively similar to the
ones for C

µ

e

.

(a) AEM: R1, R3, R5 (b) AEM: R2, R4, R6

(c) EEM: R1, R3, R5 (d) EEM: R2, R4, R6

Figure 2.8: Posterior mean (left axis, filled circles) and standard deviation (right axis, white
squares) for C

µ

e

.

In order to measure the degree of dependence between C
µ

e

and C
e

, we examine the “distance
correlation” values [75] estimated based on the MCMC samples from their posterior distribution.
The distance correlation is a measure of dependence between two random variables, and vanishes
if and only if they are independent. Given random variables X and Y with finite first moments, the
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distance correlation R(X ,Y ) 2 [0,1] is defined as

R(X ,Y ) =
J

2(X ,Y )p
J

2(X)J 2(Y )
(2.41)

where J

2(X ,Y ) is the “distance covariance" between X and Y and J

2(X) is the “distance variance,"
J

2(X) = J

2(X ,X). The distance covariance is given by

J

2(X ,Y ) =E(||X �X 0||||Y �Y 0||))+E(||X �X 0||)E(||Y �Y 0||)
�2E(||X �X 0||||Y �Y 00||))

where (X 0
,Y 0), (X 00

,Y 00) are pairs of RVs with the same joint distribution as (X ,Y ), and E(·) de-
notes expectation.

Figure 2.9 shows the dependence of R(C
µ

e

,C
e

) on the prior witdth for the two model param-
eters. For all model settings the distance correlation values between C

µ

e

and C
e

corresponding
to the AEM approach is greater than approximately 0.6 indicating a relatively strong dependence
between the two model parameters. For all filter sizes employed to filter the DNS data, these
dependecies are largest when the prior is wide and decrease as the prior narrows and hence has
a stronger effect on the posterior distributions. Since the priors for the two model constants are
independent, this leads to weaker dependencies, i.e. smaller R(C

µ

e

,C
e

) values. The distance cor-
relation results corresponding to the EEM approach are consistently smaller compared to the ones
for the AEM approach. This observation is consistent with the wider posterior distributions for
EEM compared to AEM, shown in Fig. 2.7 for select runs.

(a) R1, R3, R5 (b) R2, R4, R6

Figure 2.9: Distance correlation dependence on the standard deviation of the marginal prior den-
sities of C

µ

e

and C
e

via AEM (solid lines) and EEM (dashed lines). The color scheme corresponds
to several filter sizes, and is the same as in Fig. 2.8.

This last observation is not necessarily general when comparing AEM and EEM approaches.
While we do not provide counter-examples here, we believe that the degree of dependency between
model parameters is case dependent and a general conclusion should not be drawn just based on
the examples provided in this paper.
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Posterior Predictive Distributions for Filtered DNS Data

In this section we explore the predictive skill of the ksgs model given the posterior distributions
for C

µ

e

and C
e

. We employ the Bayesian posterior predictive distribution [39] to determine how
well the model covers the filtered DNS data. This test examines the probability density of the
predicted data, zp = f p

k , and xo
p = { f p

P
, f p

D
}, conditional on the existing data, z and xo. Essentially

it indicates how well the spread in the existing data is captured by the calibrated model. For the
AEM approach the posterior predictive density ppp (zp

,xo
p|z,xo) is given by

p(zp
,xo

p|z,xo) =
Z

p(zp|q ,q

e,z,xa)p(xo
p|xa,q e,x)p(q ,q

e,z,xa,q e,x|z,xo)dq dq

e,z dxa dq

e,x

(2.42)
Here, p(zp|q ,q

e,z,xa) ⇠ N( f a
P

C
µ

e

� f a
D

C
e

,s

2
z ), and p(xo

p|q
e,x,xa) ⇠ N(xa,Sx). For the EEM ap-

proach the model error is embedded in the posterior densities for the model parameters. Hence
there is no dependency on q

e,z in rhs of Eq. (2.42) for EEM.

Figure 2.10 shows the data z = { fk,i, i = 1, . . . ,Nt} with red, green, and blue symbols, re-
spectively. The 5 � 95% quantile range, with filled black symbold, corresponds to the marginal
posterior predictive densities for f p

k . These densities were estimated by Monte Carlo sampling,
based on Eq. (2.42). The top, middle, and bottom frames, correspond to filter widths L/64, L/32,
L/16, respectively. For both AEM and EEM, the posterior predictive results for all runs cover well
the data spread observed in the fitered DNS data. The 5 � 95% quantile range corresponding to
the pushed-forward density for f p

k is marked by open symbols for AEM. This density is obtained
by neglecting the error model q

e,z in Eq. (2.42). These results show that pushed-forward densities
consistently underpredict the data spread for all cases in this study.

Figure 2.10: Posterior predictive 5 � 95% quantile ranges AEM (solid lines) and EEM (dashed
lines). The filtered DNS data is shown symbols using the same color scheme as in Fig. 2.4.
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For the AEM approach this indicates that, in order to preserve the predictive capabilities of a
model, one needs to consider both the posterior densities for model parameters as well as account-
ing for the error model. Since the error term is connected to a certain configuration, in this case the
filtered DNS data, it is not clear how to estimate posterior predictictive distributions in configura-
tions other than the one used for the calibration process. For the EEM approach this difficulty is
circumvented by the fact that discrepancy terms are subsumed in the posterior densities for model
parameters. For this approach the computation of posterior predictive densities does not require
accounting for explicit error models.

We also present results for the marginal posterior predictive densities corresponding to xo
p,

to verify the approach for the error-in-variable model. Figure 2.11 shows the filtered DNS data
xo with symbols and the joint marginal posterior predictive densities, corresponding to R3, are
shown with iso-contours. For clarity, we only present one iso-contour for each case, corresponding
to the 5% boundary of its maximum density. These results confirm that the error model for the
independent variables captures well the dependencies and spread in the independent variables fP
and fD . The results for other runs (not shown) are nearly the same as the ones in this figure for R3
since the prior densities for q = {C

µ

e

,C
e

} have a negligible impact on the posterior density for xa.

Figure 2.11: Joint posterior predictive densities for xp
o = ( f p

P
, f p

D
) corresponding to R31 (red), R32

(green), and R33 (blue). The iso-contours correspond to the 5% of the maximum density for each
run. The filtered DNS data xo is shown with symbols using the same color scheme as in Fig. 2.4.

Principal Component Analysis of Joint PDFs

Given the strong dependence in the joint posterior distribution of C
µ

e

and C
e

for AEM, we pro-
ceed with a Principal Component Analysis [31] (PCA) of these distributions. Through the PCA
approach, we aim to identify linear combinations of these parameters that explain the MCMC
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samples. Let X 2 Rn⇥2 be a matrix with n rows and two columns, first column for C
µ

e

and second
column for C

e

. Each row represents one MCMC sample. Without loss of generality, assume that
the mean values are already subtracted from X .

The principal components of X are the eigenvectors of the covariance matrix XT X 2R2⇥2, and
the corresponding non-zero eigenvalues represent the variances of the MCMC data along the prin-
cipal directions. For this study there are two principal directions corresponding to the parameter
space spanned by C

µ

e

and C
e

. For the AEM approach, the principal component analysis indicates
that variances attributed to the 2nd component are less that 5% of the variances along the 1st com-
ponnent. This is consistent with the degree of dependence observed by visual inspection in Fig. 2.5
and by the distance correlation results in Fig. 2.9. For the EEM approach the variances along the
2nd component are about 15 � 20% of the ones for the 1st component. This is consistent with the
wider joint posterior distributions for C

µ

e

and C
e

for EEM compared to AEM.

In the next section, we will explore the dependence between C
µ

e

and C
e

along the 1st PC for
several cases. Figure 2.12 shows segments along the 1st PC line for the R32 case corresponding to
AEM and EEM, respectively. The endpoints of these segments correspond to the 5%-95% quantile
range obtained from MCMC samples projected on the 1st PC.

(a) R32 via AEM (b) R32 via EEM

Figure 2.12: Joint posterior distribution via AEM (left frame) and EEM (right frame) for R32. The
red segments show the first principal component computed from MCMC samples. The ends of
each segment correspond to the 5%-95% quantile range for MCMC samples projected on the 1st

principal component.

2.4 Forward UQ

In this section we describe an approach for pushing forward the densities of model parameters
q = (C

µ

e

,C
e

) and obtain probability densities for Quantities of Interest (QoIs) predicted by LES
models. Figure 2.1 shows a schematic for the Forward UQ process in the bottom half. Below we
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provide a description of a non-intrusive approach, followed by a description of the LES code and
the configuration setup.

The non-intrusive propagation of uncertainty from model parameters q to QoI y, proceeds
through the following procedure. Given a basis of standard random variables x = (x1,x2, . . . ,xn),
and a known functional form q = q(x ), we employ the representation in Eq. (2.29) to cast the QoI
y derived from the output of LES model f as a PCE expansion

y(q(x )) ⇡
Nt

Â
k=0

ckYk(x1,x2, . . . ,xn). (2.43)

The coefficients of this PCE are evaluated by Galerkin projection exploiting the orthogonality of
basis terms

ck = hyYki/hY2
ki. (2.44)

Evaluation of the projection integrals in Eq. (2.44) requires a number of evaluations of the model
f . For a small to moderate number of dimensions, numerical quadrature provides an efficient
way to evaluate ck using a number of samples much smaller compared to Monte Carlo sampling
algorithms. The quadrature approach involves evaluating y = f (q) for a particular set of parameter
values q

j = q(x j) with x

j = (x j
1 ,x

j
2 , . . . ,x

j
n ) corresponding to the set quadrature points required

by the accuracy of the method. The PCE coefficients are then computed as

ck =
1

hY2
ki

Nq

Â
j=1

w j f (q j)Yk(x
j) (2.45)

where, w j is the weight corresponding to the quadrature point x

j, and Nq is the number of quadra-
ture points.

Once the PCE is constructed for QoI y, moments of the distribution of y can be estimated an-
alytically based on the expansion coefficients ck [19]. For example the expectation of y is given
by c0. The PCE in Eq (2.43) can also be used as a “surrogate” when the computational model is
expensive and/or the probability density of the input parameters are updated. For example mo-
ments for several QoIs can be evaluated with negligible cost via PCE evaluations compared to the
full model evaluations. In the following sections we describe the setup for the LES simulations,
followed by additional manipulation of the input parameter space to help construct PCE for several
QoIs.

2.4.1 Channel Flow Setup

In this section we describe the LES model f employed to propagate densities from model param-
eters to output QoIs. For this study, the model f , referenced in Fig. 2.1, is represented by the
FUEGO LES software [44], developed by Sandia National Labs. It is designed to simulate turbu-
lent reacting flow and heat transfer on massively parallel computers, and was built on the SIERRA
framework [73]. In this work the low-Mach number module is used. The discretization scheme is
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based on the control volume finite element method [43] where the partial differential equations of
mass, momentum, and energy are integrated over unstructured control volumes. We employ the
values of C

µ

e

and C
e

, calibrated against the the canonical forced isotropic turbulence DNS data in
the first part of this paper, for the forward UQ study in a parallel plane channel flow at a Reynolds
number of Re

t

= 590. This value was chosen to match the DNS results by Moser et.al. [46].

The channel dimensions are 2ph ⇥ 2h ⇥ ph in the streamwise, wall-normal, and spanwise di-
rections, respectively. The boundary conditions are periodic in both the streamwise and spanwise
directions, and no slip walls are applied at both the top and bottom boundaries. There are 48 uni-
formly spaced grid nodes in both the streamwise and the spanwise directions. In the wall normal
direction there are 103 nodes, with the first four nodes from the walls placed uniformly with a
y+ = 1 spacing. The grid is then stretched through a hyperbolic tangent function until the spacing
at the centerline is approximately equal to the spacing in the spanwise direction. We note that our
grid setup is considerably more coarse than the fully resolved DNS case for a Re

t

= 590 presented
by Moser et.al. [46] in which the number of nodes were 383 ⇥ 257 ⇥ 383 in the streamwise, wall
normal, and spanwise directions respectively. We employ a CFL number of about 0.5, resulting in
a time step of approximately 10�4. The time coordinate is normalized by the channel half-width h.

2.4.2 Rosenblatt Transformation

In order to construct the PCE presented in Eq. (2.43) we map the parameter space q that employs
dependent densities for its components to the x space where all coordinates have independent
densities. For this study, the q space consists of (C

µ

e

,C
e

), the x space consists of (x1,x2), and the
map between the two can be constructed via the Rosenblatt transformation [63]. The inverse of the
Rosenblatt transformation can formally be written as

C
µ

e

= F̃�1
C

µ

e

(x1),

C
e

= F̃�1
C

e

|C
µ

e

(x2|x1),
(2.46)

where x1, x2 are i.i.d. uniform random variables. Eq. (2.46) relates the regular, mapped domain
[0,1] ⇥ [0,1] to the pair (C

µ

e

,C
e

) and uses the inverses of the marginal, F̃�1
C

µ

e

, and conditional,
F̃�1

C
e

|C
µ

e

, cumulative distribution functions (CDF) for the random variable pair (C
µ

e

,C
e

).

Numerically, the Rosenblatt transformation is computed through interpolation tables constructed
for the CDF functions in Eq. (2.46). To illustrate this approach we use the joint density for the un-
certain parameters C

µ

e

and C
e

, corresponding to an average of the joint posterior densities for runs
R3 and R4 via the EEM approach. This ensures that LES runs cover a region wide enough in
the parameter space, leading to a PCE that can be used as a surrogate to push forward the joint
distributions for C

µ

e

and C
e

corresponding to all runs R3 and R4.

Figure 2.13 shows the correspondence between physical parameter space (C
µ

e

,C
e

) and the
space parameterized by uniform random variables (x1,x2). The markers show the location of
quadrature points corresponding to a Gauss-Legendre quadrature approach. Their images in the
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Figure 2.13: Illustration of the correspondence between samples in the parameter space and their
images via the Rosenblatt map to the space parameterized by (x1,x2).

physical space are mostly distributed around the regions where the joint density p(C
µ

e

,C
e

) is sig-
nificant.

2.4.3 Polynomial Chaos Expansions for LES Quantities

We performed a set of LES simulations using the setup for the channel flow described in Sec-
tion 2.4.1. Each simulation corresponds to C

µ

e

and C
e

values selected according to the Rosenblatt
transform presented in Section 2.4.2. Using the raw LES data, we computed several QoIs. Specif-
ically, we estimated the centerline velocity, u, the maximum velocity RMS, uRMS, and the mass
flux, ṁ. All these QoIs are averaged in time over approximately five flow-through times. Using
the estimated values for these QoIs we then compute the coefficients of their corresponding PCE
via the Galerkin projection approach presented in Eqs. (2.43)-(2.45). We then compared the L2
error between 1-st, 2-nd, and 3-rd order PCEs, respectively, and the LES data, and concluded that
2-nd order polynomial approximations are sufficient to capture the QoI dependence on the model
parameters.

The mean centerline velocity, in Fig. 2.14a, exhibits a quasi-linear trend in the x1 direction
and a weak quadratic trend in x2. The mean values of the peak axial velocity RMS, in Fig. 2.14b,
exhibit a quadratic dependence on the input parameters while the mean mass flux, in Fig. 2.14c,
shows a shape similar to the mean centerline velocity. For this work the x1 coordinate is mostly
aligned with the first principal component of (C

µ

e

,C
e

), while x2 is proportional to C
e

.

We examined the relative L2 error between LES simulations and the PCE values for these QoIs.
These errors are around 6% for u and ṁ, and less than 10% for uRMS. While, in principle, longer
time averages can reduce the residual sample average noise in the LES values and allow lower
discrepancies compared to the corresponding PCEs, we consider these errors to be reasonable for
the subsequent use of the PCEs as surrogate models.
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(a) Axial Velocity on the Centerline (b) Peak Axial Velocity RMS

(c) Mass Flux

Figure 2.14: Polynomial Chaos expansions several QoI as a function of (x1,x2).

2.4.4 Probability Densities for Quantities of Interest

We employ the PCEs discussed in the previous section to evaluate QoIs values based on posterior
densities for C

µ

e

and C
e

discussed in Section 2.3. The resulting PCE-approximated model evalua-
tions are then used to compute the PDFs of the output QoIs via KDE. This procedure is repeated
for all calibration studies shown in Table 3.1.

Figure 2.15a shows the densities for the mean centerline velocity u for R3 corresponding to
several filter widths. The results in this figure indicate a strong effect exercised by the filter size,
on the PDF of u. The parameter densities corresponding to smaller filter widths, i.e. D = L/64
(red lines), shift the center of mass to higher velocity values. Larger filter widths shift the most
likely values for the centerline velocities towards smaller values which are closer to the DNS value.
Earlier DNS results [46] indicate a reference value of 21.26 for the mean centerline velocity. We
attribute the discrepancy between the DNS value and our LES study to other sources of error that
can impact this configuration such as insuficient grid resolution, in particular near the walls.

The wider PDFs observed for (C
µ

e

,C
e

) with the EEM approach translate into wider PDF’s for
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(a) Mean Centerline Velocity, u
(21.26) (b) Mean Velocity RMS, uRMS (2.74)

(c) Mean Mass Flux, ṁ (117.2)

Figure 2.15: PDF’s for several quantities of interest corresponding to LES results in a channel
flow configuration. Red, green, and blue correspond to filter widths D = {L/64,L/32,L/16} for
R3. Solid lines show pushed forward PDF’s for the AEM approach while dashed show EEM
results. The DNS values [46] are shown in parantheses in the corresponding captions.

the mean centerline velocity compared to AEM values. This is consistently observed for all filter
widths. Nevertheless, all these runs overpredict the DNS values, suggesting that other modeling
parameters, e.g. grid resolution have an substantial impact on the selected QoIs. Results corre-
sponding to other runs are qualitatively similar to the ones observed for R3. Both the peak RMS
of the axial velocity, in Fig. 2.14b, and the mass flux, in Fig. 2.14c, show output densities that are
qualitatively similar to results for the centerline velocity.

Next we compare the posterior densities obtained by sampling the full joint PDFs of C
µ

e

and
C

e

with the posterior PDFs obtained by sampling the density along the corresponding 1st PCs. The
results shown in Fig. 2.16 correspond to R32. For the AEM approach the the results based on the
densities along the 1st PC, with dashed red line, are in close agreement with the results based on full
joint PDFs with solid red line. This indicates that, for this particular study, the strong dependence
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between the two input parameters for AEM effectively renders the output being dependent only on
the linear combination of the two parameters. Unlike for AEM, the EEM results show a significant
discrepancy between the full joint posterior and the values based on the 1D density along the 1st

PC. For this set of cases the width of the joint posterior is important to the system behavior and the
reduced dimensionality parameter set does not capture the full range of results. The PCA-based
results for other runs and QoIs are qualitatively similar to the ones observed in Fig. 2.16.

Figure 2.16: Output PDFs for mean centerline velocity based on forward propagation of the joint
PDFs of C

µ

e

and C
e

(solid lines) and the joint density along the 1st PC (dashed lines). Results
corresonding to R32, AEM results shown in red and EEM in black.

2.5 Conclusions

In this paper we present a Bayesian framework for estimating joint distributions for Large-Eddy
Simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence
Direct Numerical Simulation (DNS) data. These densities are then propagated forward through
LES of channel flow to generate probability densities for several quantities of interest.

We employ DNS of forced isotropic turbulence, downloaded from the Johns Hopkins Turbu-
lence Database, to calibrate two parameters for the sub-grid scale turbulent kinetic energy model
employed in LES against fundamental configurations. We employ Gaussian priors for the model
parameters, centered at values previously reported in the literature for these parameters. We then
explore the effect of prior widths on the posterior densities and several summary statistics of inter-
est. In this context we compare two approaches for treating the discrepancy between the model and
the data in the Bayesian framework. In the first approach, abbreviated as AEM, the discrepancy is
presumed Gaussian with zero mean, and its standard deviation is inferred together with the model
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parameters. In the second approach, developed recently by some of the co-authors of this pa-
per and abbreviated as EEM, the error is embedded in the formulation of the model parameters. In
both approaches we account for noise in the independent variables via a classical error-in-variables
model.

We find that the filter size, employed to filter the DNS data, has a significant impact on the
posterior means for the model parameters, while the effect on the marginal posterior standard
deviations is weaker. We also observe that prior widths affect mostly marginal posterior standard
deviations, while the priors means are less important for the posterior means. We find that the EEM
approach leads to wider joint densities for the model parameters compared to the AEM approach.
This also results in weaker dependencies between the two model parameters for EEM, while for
AEM, these dependencies are very strong.

In the second part of the paper, the joint posterior densites for the LES model parameters
are propagated forward to obtain densities for several quantities of interest (QoI). We employ a
non-intrusive approach, and construct Polynomial Chaos expansions (PCEs) for these QoIs. The
expansion coefficients are estimated via Galerkin projection. Specifically, the projection integrals
are computed via Gauss-Legendre quadrature. Twenty-five LES channel flow simulations were run
with the two model parameters set according to the corresponding quadruature points. Once the
coefficients of these PCEs were available, the densities for the corresponding QoIs were evaluated
through PCE sampling. We found that the first principal component corresponding to the joint
posterior density leads to forward UQ results that are very close to the ones based on the full
densities in the AEM approach which show narrow joint posterior densities. Unlike the AEM
approach, EEM leads to wider posterior densities, accounting for model error, and the first principal
component is no longer sufficient to explain the dependence on the input parameters. Despite the
wider range of sub-grid model parameter values, the EEM approach still fails to predict the DNS
values for the QoIs selected for this study. Preliminary studies, to be presented in a subsequent
paper, indicate that grid resolution near the wall plays an important role in predicting LES values
that are similar to the DNS values.

The use of informative priors was necessary to constrain the parameter space as the isotropic
turbulence data was sufficient to constrain the ratio between the model parameters considered here,
but not their values. It is suggested that in the future this calibration process use data from multiple
complementary flows to better estimate all unknowns. Moreover, current results suggest that the
filter width should also be calibrated along with other model patameters, as it is likely that the filter
width will play a significant role in the resulting model form. It will also be important to match
the filter width when propagating these uncertain turbulence models through a flow as this work
provides data showing the impact of the filter width on important flow quantities.
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Chapter 3

Calibration of LES wall models for Channel
Flow

Abstract: Engineering Large Eddy Simulation (LES) is more computationally affordable and fits
better into a design time frame than high-fidelity LES, which is more accurate but significantly
more computationally expensive. In order for engineering LES to realize its full potential utility,
efficient model calibration and error estimation techniques are required.With this approach engi-
neering scale LES, which has a much coarser grid and faster turn-around time, can be of sufficient,
quantified fidelity to be useful in the design cycle. In this study we highlight a Bayesian calibration
approach for channel flow with Re

t

= 590 followed by a forward uncertainty quantification study
for quantities of interest (QoI). Calibration of model parameters for a subgrid scale LES turbulent
kinetic energy model is done in two regions of a channel flow: the near wall region and the center
of the channel. The calibration parameters are changed separately for each region for three heights
of the near wall region: y+ ⇡ 16, 32, and 48. Radial basis functions are used to construct surrogate
models for the quantities of interest with respect to the model parameter values. Posterior densi-
ties for the model parameters are then estimated in a Bayesian framework employing data from
Direct Numerical Simulation (DNS) of channel flow. Once we demonstrate successful calibration
in the channel flow configuration, these densities are then propagated forward to obtain probability
densities for several QoI. We employ non-intrusive radial basis function techniques for an efficient
propagation of uncertainties from input model parameters to output QoI. We have determined that
by calibrating near wall and center flow regions separately, QoI values can be more accurately
predicted. We test how well this calibration works for other flows by looking at a backward facing
step case at the same Re

t

as the original calibration as well as channel flows with Re
t

= 395 and
950.

3.1 Introduction

For the design of mechanisms that have complex physics and chemistry, such as gas turbine en-
gines, there is a need to balance the cost with accuracy. In Direct Numerical Simulation (DNS),
the grid is fine enough that all levels of turbulence are solved for directly. This would have the
accuracy needed, but is very expensive in terms of the computational time, so thus far only rela-
tively simple geometries have been solved with DNS. Reynolds Averaged Navier-Stokes (RANS)
is at the other end of the computational fluid dynamics (CFD) spectrum where only the mean flow
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structures are solved for and the turbulence is handled through models. While this greatly reduces
computational time, it comes at the cost of accuracy since the empirical turbulence models suffer
from high uncertainty in many flows of engineering relevance. Large Eddy Simulations (LES) are
a compromise between these two regimes: the large turbulent scales are solved for directly, but the
smaller subgrid scales are handled with turbulence models. A key question when running LES is
how to set the filter width, which determines how much of the turbulence is directly calculated and
how much is modeled. In academic LES, usually a smaller filter width is employed such that most
all of the turbulent energy is directly resolved. However, these simulations can still take weeks to
run on supercomputers, making them inconvenient to incorporate into a design process. In engi-
neering LES, faster runtimes are achieved by using a larger filter width, such that a higher fraction
of the turbulent energy is modeled using the subgrid scale model. In order to make engineering
LES useful, it is critical to be able to account for the added uncertainty associated with the more
active subgrid scale model. In this paper, we present a Bayesian framework to rigorously quantify
that uncertainty, using fully developed channel flow as test cases.

In a previous paper [65], we used a Bayesian framework to incorporate directly filtered DNS
turbulence information to estimate uncertainties in the parameters for a sub-grid scale turbulence
model. This was followed by a forward UQ study on the predictive capabilities of this approach.
In this previous work, we were able to successfully set up a framework. However, the predicted
quantity of interest (QoI), which in this case was the mean centerline velocity of a channel flow,
was significantly off from the expected DNS value. Therefore for this paper we incorporate a wall
model concept where the turbulence parameters are tuned separately in a near wall region and
in a bulk flow region. Unlike other wall models that impose a RANS-like wall stress and eddy
viscosity [77], the wall models for this study would have the values for the subgrid scale kinetic
energy, C

e

and C
µ

e

, in the wall region calibrated separately from the center of the channel flow.

3.2 Methods

3.2.1 Meshes and Setup

The height of the well resolved boundary layer was one of the parameters investigated for this
study. To this end, three distinct meshes for a channel flow were constructed. The channel di-
mensions for all three remained the same and are 2ph⇥2h⇥ph (where h is the half height of the
channel) in the streamwise, wall-normal, and spanwise directions, respectively. This configura-
tion was chosen to match simulations performed by Moser, et al. [46] so that quantities of interest
could be compared. The boundary conditions are periodic in both the streamwise and spanwise
directions, and no slip walls are applied at both the top and bottom boundaries. The streamwise
and spanwise spacing for all three meshes was kept the same as well, namely, 49 equally spaced
nodes in both of those directions. There is a total of 233k nodes, which can be compared to 37 M
nodes used by Moser, et al. [46].

The wall normal node spacing was changed for each of the three cases. It was determined
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what spacing would fully resolve the channel flow, and then this grid was âĂIJchoppedâĂİ at three
different heights from the wall. The center portion of the grid was replaced with a much coarser
mesh. For the wall region, the first four nodes were placed with a spacing of dy+ ⇡ 1. After that
the spacing for the wall region was determined by using hyperbolic stretching over a length of h
that started with a spacing that results in a y+ value of one, and ends with close to the half of the
spanwise direction spacing. When making this fine mesh, there are 96 nodes between the wall
and the channel center, which is comparable to the number of nodes that would fully resolve the
flow [77]. For the smallest near wall region, the first 12 intervals from this spacing were taken,
corresponding with a y+ value of approximately 16. For the near wall region with the medium
height there were 18 intervals for a height of y+ ⇡ 32, and for the largest near wall region there
were 23 intervals in y+ ⇡ 48. The spacing for the inner channel was then adjusted so that there
would always be a total of 97 nodes in the wall-normal direction (across the 2h height of the
channel) which is about half of what would be used in a fully resolved mesh. The number of nodes
was kept constant to determine how to best allocate the nodes in the channel with a fixed amount of
computing resources. Hyperbolic tangent stretching was also used here, starting with the spacing
at the edge of the resolved near wall region and going to a spacing that is close to the same spacing
as what is in the spanwise direction. While there is the same number of nodes in the wall normal
direction, the concentration of where those nodes are varies for each case. A comparison of the
smallest and largest wall region is shown in Figure 2.

The wall region heights correspond to different regions in the turbulent boundary layer velocity
profile. The smallest, y+ ⇡ 16, is within the viscous sublayer, the largest, y+ ⇡ 48, is in the log
layer, and the middle, y+ ⇡ 32, is at the transition between these two in the buffer layer [81].

Figure 3.1: Domains with wall regions of y+ = 16, 32, and 48 are shown from top to bottom. The
wall region is shown in red and the center region in gray.
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Figure 3.2: Domains with wall regions of y+ = 16, 32, and 48 are shown from top to bottom. The
wall region is shown in red and the center region in gray.

For the two other channel flow cases, a similar method was used to create the meshes. The
spacings in the streamwise and spanwise directions were kept the same as before, but a wall region
with height of y+ = 48 for the specific flow velocity was created.

3.2.2 Flow Solver

Fuego is Sandia National LaboratoriesT́hermal/Fluids code designed to simulate turbulent reacting
flow and heat transfer [44] on massively parallel computers built on the SIERRA framework.
The code was adapted for compressible flow and combustion, and is well suited for low Mach
number flows. The discretization scheme used in Fuego is based on the control volume finite
element method [43], where the partial differential equations of mass, momentum, and energy
are integrated over unstructured control volumes. The one equation subgrid-scale kinetic turbulent
energy model (ksgs) was used [7, 8], and the parameters C

e

and C
µ

e

for this model were calibrated
using uncertainty quantification. For the calculations reported here, the first order upwind scheme
was used for the convective terms. The ksgs turbulence model can be written as

Z

V

∂ r̄ksgs

∂ t
dv+

Z

∂V
r̄ksgsũ jn jds =

Z

∂V

µk

sk

∂ksgs

∂x j
n jds+

Z

V

�
Psgs

k �Dsgs
k
�

dv (3.1)

with the dissipation term
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Dsgs
k = C

e

(ksgs)3/2

D
(3.2)

and the production term for incompressible flows is

Psgs
k = 2µt S̃i j

∂ ũi

∂x j
(3.3)

where the filtered strain rate tensor is

S̃i j =
1
2

✓
∂ ũi

∂x j
+

∂ ũ j

∂xi

◆
(3.4)

and the subgrid turbulent viscosity is modeled as

µt = C
µ

e

D
p

ksgs (3.5)

3.3 Results

3.3.1 Channel Flow

In a previous study, Safta et al. [65], used a Bayesian framework to incorporate filtered DNS
turbulence information to estimate uncertainties in the parameters for ksgs turbulence model. By
varying the parameters C

e

and C
µ

e

found in equations 2 and 5 above for 25 channel flow cases we
were able to use Polynomial Chaos Expansion (PCE) to build a response surface. When comparing
the values for the mean centerline velocities of these cases with this value from a DNS simulation,
it was found that the engineering LES over-predicted the centerline velocity for all values of the
parameters, C

e

and C
µ

e

. The engineering LES values ranged from 23.3 to 26.5 which can be
compared to the value of 21.26 found by Moser, Kim, and Mansour [46]. We hypothesized that
a more accurate value could be reached by incorporating spatial variation into the C

e

and C
µ

e

parameters. In particular, we wanted to explore the potential of a wall model technique in which
a different value of C

e

and C
µ

e

would be prescribed in the near wall region than in the bulk flow
region.

Principal Component Analysis (PCA) of C
e

and C
µ

e

on the filtered DNS data shows that these
two parameters are highly correlated because of conservation of production and dissipation, so
this was used to reduce the number of parameters calibrated in this study from 4 to 2. Because
the computational cost scales exponentially with the number of parameters to be calibrated, this
simplification reduced the number of simulations needed to be run by a factor of four and therefore
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the drastically reduced the computational resources required. Instead of varying C
e

and C
µ

e

sepa-
rately, pairs of these values calculated from the PCA were consistently used together. Table 1 lists
the values for the parameter pairs. This is an example of how DNS data/calibration can be used to
make engineering calibration more tractable.

Three heights for the near wall region were investigated: y+ ⇡ 16, 32, and 48. These heights
correspond to the viscous sublayer, the buffer layer, and the log layer. For each of these heights, 25
simulations with the combinations of parameters C

e

and C
µ

e

1-5 were run (see Table 3.1). It was
originally intended that with this data the wall region height would also be a parameter that could
be fit using PCE calibrated for the optimal height. However, not all of the runs produced turbulent
flow and Figure 3.3 illustrates which became laminar and which stayed turbulent. Because so
many cases failed to transition to turbulent flow for the smallest two heights, it was not possible to
include the near wall region height as a calibration parameter since PCE needs a smooth function
to be accurate. To move forward with the largest wall region an additional 11 cases, with value
pairs zero and six from Table 1, were added to the original 25 so that the mean centerline velocity
values would bracket the DNS answer.

Table 3.1: Parameters used to create response surface for the Bayesian data.

Pair C
µ

e

C
e

0 0.1118 s

pr
1

1 0.0958 s

pr
1

2 0.0797 s

pr
2

3 0.0563 s

pr
2

4 0.0328 s

pr
3

5 0.0167 s

pr
3

6 0.0087 s

pr
3

Nevertheless, the results from these three wall region heights are interesting from a modeling
perspective. A general trend which was observed was that cases with small values for C

e

and
C

µ

e

, and therefore less production and dissipation feedback in the ksgs model (as well as generally
less modeled stress), in the center region are more likely to switch to turbulent flow. For the case
with the smallest wall region which place the transition in the viscous sublayer, even the turbulent
cases all had mean centerline velocity values that were too high compared with the DNS data.
The running averages of the mean centerline velocities for these cases are shown over the time
span of the simulation in Figure 4. When the wall layer height was at the buffer layer, simulations
only became turbulent for the cases where the C

e

and C
µ

e

values were the smallest in the center
region. We speculate that a reason for this might be that the shear instabilities which generate the
turbulence can be either somewhat mimicked with a model or must be resolved but are harder to
capture using a combination of both. The buffer layer has a sensitive and unstable nature which
makes it a poor candidate for a point at which to abruptly change modeling coefficients. However,
there was one case with y+ = 32 which did reach a mean centerline velocity that was very close to
the DNS value. The cases with the wall region height in the log layer (y+ = 48) yielded the most
promising results. Only 7 of the 25 cases remained laminar, and the value for the mean centerline
velocity was close to the DNS value in several cases.
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Figure 3.3: The mean centerline x-velocities are shown for the original 75 cases plus the extra 11
cases (light green) for the wall region of height y+ = 48. The rows correspond to C

e

- C
µ

e

pairs in
the wall region and the columns represent the pairs in the center region. The values for the pairs
can be found in Table 3.1. If a square is red, the simulation had laminar flow, if it is green then the
flow turned turbulent.

Figure 3.4 shows the spatial mean of the velocity taken at the centerline plane. An averaging
window of 40 time units was used to calculate a running time average, and the error bars represent
one standard deviation for that window. The centerline velocity is the value used in the calibration.
We will also see how well the calibration works on other QoI. Figure 3.5 shows the running average
of the mass flux, Figure 3.6 the maximum RMS value for the flow, and Figure 3.7 the height of
that maximum RMS. The mass flux follows the trends of the mean centerline velocity somewhat
closely. However the maximum RMS trends are unique. All of the turbulent flow cases have a
higher maximum RMS value compared to the DNS value, and the parameter set which produces
the best results for the centerline velocity are not the most accurate at predicting the maximum
RMS value.

Figure 3.8 compares the velocity profile for the Moser et al. DNS simulation with two cases
with a wall region of y+ = 48. The blue line matches the centerline velocity the best and has pair
6 from Table 3.1 for the center and pair 2 for the wall region. The green line does very well near
the wall and has pair 6 for the center and pair 5 for the wall. This figure indicates that it is difficult
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Figure 3.4: The mean x-velocity at the centerline plane was averaged in time over a window of 40
time units. The running average is plotted here along with the standard deviation in that average
block. The cases that correspond to laminar flow are shown in dark red. The time averaged DNS
value of 21.26 is shown as a red line.

to find a single parameter pair that would match the DNS data at both the wall and the centerline.
The stress balance can be represented by the equation for the resolved convective stress, ūv which
is written as:

ūv =
dP
dx

y+

✓
1

Re
+ny

◆
dū
dy

(3.6)

Where 1/Re(dū/dy) is the viscous stress and nt(dū/dy) is the modeled stress. For the case that
matches the DNS centerline velocity (blue line in Figure reffig:velprof) the velocities near the wall
are higher than the DNS near-wall velocities. One reason this might be is that the stresses for this
case are lower than the stresses for the case that do match the DNS data near the wall (green line
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Figure 3.5: The mass flux was averaged in time over a window of 40 time units. The running
average is plotted here along with the standard deviation in that average block. The cases that
correspond to laminar flow are shown in dark red. The time averaged DNS value of 117 is shown
as a red line.

in Figure 3.8 ). The stresses can be compared in Figure 3.9, which shows that overproduction of
stress is mostly coming from the modeled stress. The true stress balance is not exactly recovered
because we do not have access to the stress as it enters the equations in the code.
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Figure 3.6: The maximum RMS value was averaged in time over a window of 40 time units. The
running average is plotted here along with the standard deviation in that average block. The cases
that correspond to laminar flow are shown in dark red. The time averaged DNS value of 2.74 is
shown as a red line.

3.4 UQ with engineering level LES

3.4.1 Bayesian Model Calibration

We are using a Bayesian approach for the uncertainty quantification in which the posterior distri-
bution, P(q |D), can be expressed with Bayesf́ormula:54



p(q |D) = LD(q)p(q)/p(D) (3.7)

Here, p(q) and p(q |D) are the prior and posterior distributions for the model parameters q .
These distributions represent knowledge about these parameters before and after learning from the
dataset D, For the present study, D is based on the DNS channel flow data set [46]. The model
parameters are the pairs of ksgs model constants: q = {hwall(Ce

,C
µ

e

)} , hcenter(Ce

,C
µ

e

), where
hwall is the set of (C

e

,C
µ

e

) in the near wall region and hcenter is the set in the center region. The
prior distribution, P(q), is the belief of what the parameters q should be, and is a uniform prior
in this case. The model evidence, P(D), is effectively a normalizing factor and is not relevant for
this study. The likelihood P(D|q) is the probability of observing D given a particular instance of
q . We propose the following discrepancy model between the data and the LES calculations.

d = M(q)+ e = M(q)+N(0,s) (3.8)

Here, the model M represents Quantities of Interest (QoI) based on LES simulations corresponding
to the two model parameters hwall and hcenter. The discrepancy is presumed to follow a zero-mean
Gaussian distribution e(0,s), and accounts for the fact that the LES computations are modeling
small turbulent scales and are less accurate compared to DNS. Since data D is the result of deter-
ministic DNS computations, in this study we neglect discrepancies due to noise in the data. With
these assumptions, the likelihood is given by

p(D |q) =
1p

2ps

2
exp
✓

�( ¯VDNS �M(hwall,etacenter))2

2s

2

◆
(3.9)

Here, the data D consists of ¯VDNS which is the time and spatial averaged velocity at the cen-
terline plane of the DNS data set and s is standard deviation of the model error term epsilon. A
Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the posterior probability
density, P(Dq) in Eq. (4). MCMC allows sampling from a probability density by constructing
a Markov Chain that has the target density as its stationary distribution [21]. In particular, we
employ an adaptive Metropolis algorithm [23], which uses the covariance of the previously visited
chain states to explore posterior distributions in an efficient manner. We employ several diagnos-
tics [58, 32] to determine when the MCMC samples converge to stationary posterior distributions.
Since the MCMC approach requires a large number of samples to produce converged posterior
distributions, we rely on surrogate models to replace the expensive LES computations. These sur-
rogate models are constructed based on LES simulations corresponding to select sample values for
q = hwall,hcenter, shown in Table 3.1. Originally these samples were optimally placed to construct
surrogate models based on Polynomial Chaos concepts [19, 65]. As some of the model runs failed
to produce valid turbulent results, resulting in an unstructured valid region, we turned our attention
to Radial Basis Functions (RBFs) [6] for the construction of surrogate models for the Quantities of
Interest resulted from LES computations. Specifically, we employed a Multiquadric Radial Basis
Function (RBF) for the surrogate model:
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M(q) ⇡
N

Â
i=1

wi

q
1+(ek|q �qi||)2 (3.10)

where e is a smoothing parameter and wi are weights corresponding to each RBF. Here qi
are “valid" parameters samples, see Table 3.1. Optimal values for the smoothing parameter are
determined via a cross-validation procedure by leaving out one sample at a time. The weights are
computed by regression. Slices through the RBF surrogate model for the wall model cases that
have a height of y+ = 48 are shown in Figure 3.10 for the mean centerline velocity. RBF-based
surrogate models for the mean mass flux and the mean maximum RMS of the x-velocity are also
presented in Figure 3.11 and Figure 3.12. We found that, for the mean centerline velocity and the
mass flux epsilon e = 0.001 was an optimum value for providing a good approximation to the data.
For the results shown in Figure 12, the optimum value for this parameter is approximately 0.0005.

3.4.2 Posterior Densities

Figure 3.13 shows the posterior pdf P(q |D) for the two sets of model parameters, hwall and hcenter.
These densities are constructed via Kernel Density Estimate [70] using 106 MCMC samples. We
observed a region of Maximum A Posteriori (MAP) values shown with dark red in Figure 3.13.
The values from literature for the parameter sets include (C

µ

e

,C
e

) = (0.0845,0.85) for isotropic
turbulence [87] and (C

µ

e

,C
e

) = (0.07,1.05) for shear flow [69]. The corresponding range of
values corresponding to the MAP region observed in Figure 3.13 corresponds to (C

µ

e

,C
e

) from
(0.086, 1.65) to (0.109, 2.04) in the wall region and (C

µ

e

,C
e

) from (0.016, 0.35) to (0.024, 0.48)
in the center region. This indicates that there is more production and dissipation in wall region and
also higher stresses.

3.4.3 Forward UQ

The densities of the model parameters q = {hwall(Ce

,C
µ

e

),hcenter(Ce

,C
µ

e

)} are pushed forward
to obtain the probability densities of other quantities of interest, including mass flux, maximum
RMS, and the velocity profile. We first start with a posterior predictive check [39] for the mean
centerline velocity. This test proceeds with the marginalization of the likelihood P(Vc|D) over the
posterior distribution of model parameters P(q |D):

p(Vc|D) =
Z

p(Vc|q)p(q |D)dq (3.11)

This test indicates the adequacy of the calibrated parameters and the employed noise model for the
centerline velocity, Vc. The left frame in Figure 3.14 shows the posterior predictive pdf obtained
based on the above expression. The experimental value, shown with the red circle, is in the vicinity
of the MAP value confirming the adequacy of calibrated model for this parameter. For other QoIs
we inspect push-forward posterior distributions. These are obtained via an approach similar to the
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one presented in Equation 3.5, with the exception of the noise model who is only available for the
data employed in the calibration. The center and left frames in Figure 3.14 presents results for the
mean mass flux and the maximum velocity rms. While the experimental value for the mass flux
exhibits a reasonable probability density based on the pushed forward posterior for this QoI, the
experimental value for the velocity rms is well outside the range of values predicted by the model
This again emphasizes that care must be taken when calculation forward UQ estimates for QoI
which are not closely related to the QoI on which the calibration is completed.

3.4.4 Forward Propagated PDF for Velocity Profile

A push forward UQ was also completed for the velocity profile. RBF models for the spatially
averaged axial velocities were computed for grid locations across the channel cross-section. We
then employed these models to push-forward the posterior density for the model parameters and
obtain 1D marginal densities at each location along the profile. Summaries of these densities are
shown in Figure 3.16. These results indicate a relatively narrow variation around the mean profile,
with 1D marginal standard deviations between 4% near the wall and 2% near the middle section.

3.4.5 Forward Propagation for Channel Flow with Different Re
t

In order to check the calibration of the model parameters at Reynolds numbers other than the one
used for the calibration, channel flow cases at Re

t

= 395 and 950 were also run. Both cases were
centered around the best cases at the calibration Re

t

= 590. For the lower Reynolds number, half
of the flows did not stay turbulent long enough to compute statistical data on the flow, and the ones
that did all had mean centerline velocities that are higher than the DNS value of 20.13 [46]. For
the higher Reynolds number, all 16 flows were turbulent, but again, the mean centerline velocity
was higher than the DNS value of 22.44 [29]. It would most likely be possible to find the correct
combination of parameter values for this Reynolds number if there were more time fr this study.

3.4.6 Forward Propagation for Backwards Facing Step

3.5 Conclusions

Engineering LES can achieve correct quantities of interest for channel flow if the turbulence model
parameters are tuned correctly. This can be achieved more easily if wall region and center region
are tuned separately. We have found that the height of the wall region matters and that the best
choice is to use a height that is within the log layer. Bayesian calibration and surrogate models have
allowed us to explore the region of parameter space that leaded to the correct center line velocity
values. The optimal parameter values for this channel flow case in the center region are lower than
values found in literature, and wall region optimal values are higher. There is a sensitivity of the
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results to the chosen QoI. Ones that are physically similar to the output that is used for calibration
are much more accurate than ones that are less similar. In this example we used the centerline
velocity for calibration, and the mass flux was well predicted, while the predicted maximum RMS
value was much less accurate.
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Figure 3.7: The height of the maximum RMS value is shown with respect to the DNS value (y+ =
19.39). The cases that correspond to laminar flow are shown in dark red.
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Figure 3.8: Velocity profiles for two cases compared to DNS data (black line). The blue line
shows the case which has the mean centerline x-velocity closest to the DNS data. The green line
is an example of a case which matches the DNS profile well in the wall region.

Figure 3.9: Stress balances for the two cases shown in Figure 3.8.

Figure 3.10: Comparison of Radial Basis Function surrogate, with blue lines, with data from LES
runs for the mean centerline velocity, shown with green circles.
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Figure 3.11: Comparison of Radial Basis Function surrogate, with blue lines, with data from LES
runs for the average mass flux, shown with green circles.

Figure 3.12: Comparison of Radial Basis Function surrogate, with blue lines, with data from LES
runs for the mean RMS of the X-velocity, shown with green circles.
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Figure 3.13: Joint PDF. Red indicates that the model produces a mean centerline velocity which is
close to the DNS value while blue indicates more discrepancy.

Figure 3.14: Posterior predictive distribution for the mean centerline velocity Vc, and pushed-
forward posterior distributions for the mean mass flux and maximum RMS of X-velocity. The red
symbols correspond to the DNS data: 21.26, 117.2, and 2.74, respectively.
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Figure 3.15: 1D Marginal pushed-forward posterior densities for the axis velocity profiles. The
blue region in the left frame corresponds to 5-95% quantile range while the green corresponds to
25-75% range. The black line shows the expected ux profile. The right plot shows the relative
magnitude of the standard deviation of the 1D marginal pushed-forward posterior density.
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Figure 3.16: This figure shows the mean centerline velocities for 16 cases each at Re
t

= 395 and
950.
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Chapter 4

Numerical Parameter Sensitivities of Open
Jet Flow

4.1 Introduction

Turbulent flows are of great scientific and technological areas, ranging from astrophysical phenom-
ena to internal combustion engines. While observation and experiment are vital tools to investigate
these flows, simulation is needed in order to fully explore the various regimes in which turbulent
flows occur and predict their effects for engineering applications. Unfortunately, turbulence has
proven to be difficult to examine computationally. Much understanding of the fundamental physics
has been learned from direct numerical simulations (DNS) of turbulent flows. These simulations
use high-order numerical methods and resolve all of the energy containing scales to minimize the
effect of numerical errors on the results. However, the cost of DNS exceeds the ability of many
modern computers to investigate important flows [11, 2].

In lieu of resolving all the dynamically significant flow features, other approaches to computing
the solutions of turbulent flows rely on resolving either none of the fluctuations, as in Reynolds
Averaged Navier Stokes (RANS), or only the large scale fluctuations, as in large-eddy simulation
(LES). RANS is the primary tool for engineering simulations because of its relatively low cost
and well-quantified numerical errors. In particular, mesh convergence can be used to minimize the
error associated with discretization, while the errors arising from the numerical methods are less
significant because of the stable nature of the solution.

While RANS has these advantageous properties, its reliance on modeling all the turbulent fluc-
tuations present in a flow can limit its predictive capabilities in some important situations such as
separated flows. By resolving larger motions, LES relies less on models and has been successful at
simulating scientifically interesting flows with high-fidelity. However, its utility to engineering ap-
plications has been limited because coarse, unstructured meshes and associated numerical methods
introduce significant errors.

Quantifying numerical errors falls under the purview of solution verification within the Verifi-
cation and Validation (V&V) process. These studies identify the key numerical parameters influ-
encing solution fidelity and quantify the variation they induce. The most commonly investigated
source of numerical errors are those associated with finite mesh resolution. For LES, numerical
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methods have been reported to also significantly effect the resulting solution. In this work, we
consider the effect of numerical parameters on LES solutions using the software package Nalu.
Nalu is an unstructured, low-Mach number solver with both RANS and LES models, and as such
is an exemplar of the types of codes which will be used for engineering applications.

This chapter is organized as follows. In Section 4.2 we provide an overview of the numeri-
cal methods which will be investigated, as well as the sampling strategy and how the numerical
discretization schemes are reformulated to be amenable to statistical analysis. The results of the so-
lution verification study are presented in Section 4.3, and some conclusions are offered in Section
4.4.

4.2 Numerical Methods

In this work we use the CFD software Nalu simulating an open jet as the example for the nu-
merical parameter study. Nalu is an unstructured, low-Mach number code which has multiple
numerical methods implemented in it, making it ideal for the present study. It contains both edge
and element based schemes, as well as upwinding and conservative numerical methods. For the
purposes of this work, two studies will be performed and compared. The first will consider a mix
of discretization schemes, while the other will examine a combination of the edge and element
methods with different upwinding methods. We now present the features of the code which enable
both studies.

As most of the numerical parameters in CFD codes alter how advection operators are con-
structed in terms of stability and accuracy, the numerical parameters used in the LHS study will
span the space of various operators. Integration over a control volume face is descretized as a
summation over a set of integration points, denoted by index j, as

Z

CV
rfu ·ndA ⇡ Â

j
ru jf jA j, (4.1)

for an advected field f . The choice of the method to approximate f j forms the basis of different
CFD algorithms.

Nalu supports a blending of projected nodal gradients and upwinding to enable psuedo-higher
order schemes using the following general approximation

f j = hfupw +(1�h)(bfcds +(1�b )f4th). (4.2)

The parameter h can be used to select between upwind (h = 1) and central approximations (h = 0).
Its value is selected using a function of the cell Peclet number, which for a given face is defined
based on the adjacent nodes:

PE j =
1
2

(uR
j +uL

j )(x
R
j � xL

j )

n

, (4.3)
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where the R and L denote the face’s left and right nodes, and n is the viscosity. The upwind
blending is computed using the function

h j =
PE2

j

h+PE2
j
. (4.4)

Denoted the hybrid upwind factor, h controls how quickly this blending occurs from h = 0 when
PE j = 0 to h = 1 as PE j ! •.

Nalu provides additional control over the formulation of the upwind operator itself via blending
between the extrapolated and interpolated state:

fupw =

⇢
aupwf̃

L
upw +(1�aupw)fcds, u j > 0

aupwf̃

R
upw +(1�aupw)fcds, u j < 0 (4.5)

Extrapolated states are provided by

f̃

L
upw = f

L +dL
j

∂f

L

∂x j
(4.6)

f̃

R
upw = f

R �dR
j

∂f

R

∂x j
, (4.7)

with dL
j and dR

j are the distances between the integration point and corresponding node. For the
interpolated state, fcds, a standard central difference scheme is used based on a linear combination
of the values at the adjacent nodes similar to a finite element interpolation.

A third numerical parameter is introduced which blends the upwind and central difference
operators to create a psuedo fourth order scheme:

f4th =
1
2
�
f̂

L
upw + f̂

R
upw
�
. (4.8)

Left and right methods are defined as

f̂

L
upw = af̃

L +(1�a)fcds (4.9)

f̂

R
upw = af̃

R +(1�a)fcds. (4.10)

Blending the upwind and central difference contributions is handled using the parameter a . Given
these three numerical parameters, aupw, h, and a can be combined to create a continuum of dis-
cretizations.

To determine how these parameters interact, we can combine Eqs. (4.5), (4.6), (4.7), and (4.8)
into Eq. (4.2) to obtain

f j = h

⇥
aupwf̃

U
upw +(1�aupw)fcds

⇤
+(1�h)

"
a(1�b )

f̃

L
upw + f̃

R
upw

2
+

✓
1
2
(1�a)(1�b )+b

◆
fcds

#
.

(4.11)
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To simplify the notation, f̃

U
upw is used to denote the upwind contribution in Eq. (4.6) or (4.7) as

appropriate based on the velocity. By collecting terms, the consolidated equation for the field at
the integration point is

f j = haupwf̃

U
upw+a(1�h)(1�b )

f̃

L
upw + f̃

R
upw

2
+

✓
h(1�aupw)+

1�h

2
(1+ab �a +b )

◆
fcds,

(4.12)
with further consolidation of terms leading to

f j = haupwf̃

U
upw +(1�h)(a �ab )

f̃

L
upw + f̃

R
upw

2
+

✓
h �haupw +

1
2

((1�h)(ab �a)+(1�h)(1+b ))

◆
fcds.

(4.13)

From this we can see that there are three contributing parameters:

P1 = haupw (4.14)

P2 =
a(1�h)(1�b )

2
(4.15)

P3 = h +
(1�h)(1+b )

2
(4.16)

such that Eq. (4.13) can be expressed as

f j = P1f̃

U
upw +P2

�
f̃

L
upw + f̃

R
upw
�
+(P2 +P3 �P1)fcds. (4.17)

As a result, we need only vary three parameters rather than four to identify the sensitivities, which
will be a , aupw, and h. The presence of this structure in the numerical method allows for a robust
examination of the effect of different stencils on the CFD results.

In LES the numerical method and turbulence models can interact and collectively effect the
simulation results. In order to assess this effect, the turbulence model will also be varied along
with the numerical parameters. The WALE model [48] will be used in this work which contains a
single model constant which can be varied. The formula for the turbulent viscosity is:

µt = r(CwD)2 (Sd
i jS

d
i j)

3/2

(Si jSi j)5/2 +(Sd
i jS

d
i j)

5/4 . (4.18)

The model constant, Cw is typically reported to have values between 0.325 and 0.55, and the filter
width D is chosen as the cube root of the element’s volume. The standard strain rate tensor, Si j
appears in the formula, as do tensors based on the velocity gradient squared:

Sd
i j =

1
2
(g2

i j +g2
ji), g2

i j =
∂ui

∂xk

∂uk

∂x j
, g2

ji =
∂u j

∂xk

∂uk

∂xi
. (4.19)

Summation is implied over repeated indices. In this work, the model constant is varied over the
range 0 to 1.
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4.3 Results

4.3.1 Sampling-based Study

The first verification study was accomplished by performing a 50 evaluation Latin hypercube sam-
ple (LHS) over the three numerical parameters and turbulence model constant. Each dimension
was sampled uniformly, and the overall number of samples was 60 due to the computational bud-
get. Assessing the variability of the simulation results was done by considering the first and second
moments of the velocity, as well as the pressure, at 5 heights uniformly from 20% of the domain
to 100%. At each plane, the velocity was decomposed into streamwise (normal), radial, and tan-
gential moments and averaged radially . This strategy was chosen because it enabled us to observe
the most important trends in the jet’s evolution.

Figure 4.1: Streamwise velocity profiles at four stations away from the inlet.

Figure 4.1 shows the streamwise velocity at the 20% through 80% heights arising from each
simulation. We observe that there is a cluster of profiles within the ensemble, along with a few
outliers of significantly higher velocities at the centerline. To determine which parameters drive
this behavior, the centerline streamwise velocities are plotted against each parameter in Figure
4.2. Correlation coefficients for each are also shown, the largest of which by a great margin is
that with respect to aupw. While the correlation coefficient measures the strength of the linear
relationship between the parameter and the output, visual inspection reveals that while significant,
the relationship is not linear. There is a rapid shift upwards in the centerline velocity starting at
aupw ⇡ 0.8.
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Figure 4.2: Streamwise velocity profiles at four stations away from the inlet.

While the visual data presented in the figures illustrates the phenomena, a more systematic
analysis can rest upon the correlation coefficient. For each profile for all output variables, the
amplitude of the first peak (or center value, if none existed) as well as its location was correlated
with each input parameter. The only variable exceeding a correlation value of 0.5 for any of the
quantities of interest was aupw. Consistently, its effects were only present in the upper portions of
its domain, ranging from 0.83 at 20% height to 0.48 at 100% height. In some cases, the correlation
coefficient was quite low but the relationship was still strong but characterized by an upward then
downward trend in the relationship. However, neither statistical nor visual data was obtained
suggesting a relationship between any of the other parameters and the quantities of interest.

Given the results, the primary conclusion is clear: excessive damping from using upwind oper-
ators delays the onset of jet core collapse primarily through retarding the instability leading to it.
Parameters affecting the accuracy of the numerical method have no statistically significant effect.
Most interestingly, even the choice the turbulence model constant does not greatly impact the re-
sulting velocity fields even though it is also dissipative in nature. A recommendation can be made
based on this study that upwinding be used only to limited amounts. While well-known in the LES
modeling community, these results illustrate that, at least for some cases, some upwinding can be
used to either stabilize the numerics or accelerate convergence without an adverse affect on the
velocity field. This result therefore enables practitioners to reduce the time to solution with only a
small impact on its accuracy.
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4.4 Conclusions

The primary conclusion of this study is that upwinding can have a large affect on simulation re-
sults. While previously known, these results demonstrate key quantities of interest can be incor-
rectly predicted by over 100%. What was discovered in this study, however, is that the variation
of the overprediction is a highly non-linear function of the amount of upwinding; delineation be-
tween little to no effect and a large effect occurs over a change in the amount of upwinding of
approximately 5%. Another discovery is that non of the other numerical parameters, including
those which changed the order of accuracy of the method, had any statistically significant effect.
More surprising was that the WALE model coefficient likewise had no statistically significant im-
pact on the flow. We can conclude that, for this flow configuration at least, that keeping the amount
of numerical dissipation below a critical threshold is the most important thing that can be done to
limit numerical errors.

71



This page intentionally left blank.



Chapter 5

A posteriori analysis of the WALE model
for Jet-in-Crossflow

In this chapter we explore the correlations between several flow markers in LES of turbulent flow
and parameters of select sub-grid models. Specifically, we study correlations between several
non-dimensional parameter derived from high-resolution LES simulation and the WALE model
constant Cw [48]. For this purpose we focus on the jet-in-crossflow configuration based on the
experiment conducted by Su and Mungal [74]. We employ the high-resolution LES simulation
data provided by Ruiz et al [64]. Figure 5.1 depicts the jet-in-crossflow configuration, including
the configuration of the coordinate axes.

p
k/uj [�]

Plane 1: z/d= 0 Plane 2: y/d= 15 

0 0.05

Plane 3: y/d= 7.5 

x
y

z

Figure 5.1: Configuration of computational domain for the jet-in-crossflow configuration.

In Section 5.1 we introduce notations used in this chapter. The derivation of the expresion for
the WALE constant is presented in Section 5.2, while Section 5.3 shows the definitions for the
non-dimensional parameters picked for this study and their spatial-dependent correlations with the
WALE constant.
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5.1 Notations

Here we define the filtering conventions for the velocity field and derived quantities. We employ a
top-hat filter of width D to filter the high-resolution velocity field ui(y) provided by Ruiz et al [64].
Here y are the spatial coordinates and ui refers to the i�th component of the velocity field. While
the data is time dependent, we dropped the time dependency to simplify the notations below.

• Velocities

ũi = ũi(x;D) ⌘
Z

W
ui(y)G(x�y;D)dv, (5.1)

u0
i = ui � ũi (5.2)

• Kinetic energy
eK =

1
2
guiui, Kres =

1
2

ũiũi, ksgs = eK �Kres (5.3)

• kgu0
iu

0
jk denotes the Frobenius norm

kgu0
iu

0
jk =

s

Â
i, j

gu0
iu

0
j
2

(5.4)

and
gu0

iu
0
j = gu0

iu
0
j|x;D =

Z

W
u0

i(y)u0
j(y)(y)G(x�y;D)dv (5.5)

5.2 Estimate WALE model constant cw

Starting from the definition of the tubulent kinetic viscosity nt

nt =
µt

r

= (cwD)2

⇣
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d
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Here, Si j and Sd
i j are given by
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with g2
i j given by

g2
i j =
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∂ ũk

∂x j
=

∂ ũi
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∂ ũ1

∂x j
+

∂ ũi
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Given that nt can alse be defined as

nt =
(ũiũ j �guiu j)Si j +

2
3ksgs

di jSi j

2SklSkl
(5.9)

Using Eqs. (5.6) and (5.9) one can extract the WALE model constant

cw =

 
(ũiũ j �guiu j)Si j +

2
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!,0
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d
i j

⌘5/4

1

CA (5.10)

5.3 Parameter of Interest

We define in Table 5.1 several non-dimensional parameters based on quantities derived from the
velocity field: p1 is based on the Frobenius norm of the filtered velocity gradient tensor; p2 is
constructed with the norm of the vorticity field based on the filtered velocity; p3 is based on the
Frobenius norm of the outer product of the filtered velocity field; p4 is based on the magnitude of
the filtered velocity vector, essentially the Re number based on the fieltered velocity; p5 is based
on the Frobenius norm of the strain rate tensor; p6 is based on the determinant of the strain rate
tensor.

Parameter Formula Obs.
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∂ ũi
∂x j

p2 kwkD2�
n kwk =

p
wiwi, w = —⇥ ũ
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Âi, j Si j
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p6 det(S)1/3D2�
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Table 5.1: Non-dimensional flow markers.

We compute the Pearson correlation coefficient between each of the parameters presented in
Table 5.1 and the WALE model constant presented in Section 5.2. For example, the correlation
coefficient beween p1 and Cw is computed as

rp1,Cw(x) =
ÂNt

i=1 (p1(ti,x)� p1(x))
�
Cw(ti,x)�Cw(x)

�
q

ÂNt
i=1 (p1(ti,x)� p1(x))2

q
ÂNt

i=1
�
Cw(ti,x)�Cw(x)

�2
(5.11)

where ti is the time and x = {x,y,z} is the spatial coordinate. The expected values p1(x) and Cw
are computed with respect to time,

p1(x) =
1
Nt

Nt

Â
i=1

p1(ti,x), Cw(x) =
1
Nt

Nt

Â
i=1

Cw(ti,x) (5.12)
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For this study we employed approximatelt Nt = 90 time snapshots spanning aaa flow-through
times.

Figures 5.2 and 5.3 show Pearson correlation coefficients between Cw and p1, p2, p3, and p5,
respectively. The results corresponding to p4 are similar to the ones bases on p3, while the results
based on p6 are similar to the ones bases on p5. Consequently, p4 and p6 are not shown for brevity.
The contour plots in the center plane, z = 0 indicate two types of correlations. One type, corre-
sponding to p1 and p5 indicate consistent correlations throught the plane after the the two flows
start mixing. The correlations are stronger in the regions upstream of the turbulence breakdown
point (TBP). The second type corresponds to p2 which only exhibits relevant correlations with Cw
on the edges of the mixing region between the cross-flow and the jet. Parameter p3 exhibits little
correlations with the WALE model constant.

The results in the y = 15 plane, in Fig. 5.3, confirm the similarities between the results based
on p1 and p5, These parameters exhibit correlation coefficient values around 0.5�0.6 throughout
most of the mixing region. By this flow region, the correlations between p2 and Cw are mostly neg-
ligible. The ocasional “spikes” are most likely due to the limited number of time steps employed
for these calculations.
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Figure 5.2: Correlation coefficient contours in the z = 0 plane. The left column shows contours
corresponding to positive correlations, while the right column shows the absolute magnitude of the
negative correlation regions. Rows correspond to correlations between Cw and p1, p2, p3, and p5,
respectively.
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Figure 5.3: Correlation coefficient contours in the Y = 15 plane. The left column shows contours
corresponding to positive correlations, while the right column shows the absolute magnitude of the
negative correlation regions. Rows correspond to correlations between Cw and p1, p2, p3, and p5,
respectively.
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Chapter 6

Sensitivity of Combustion Models to
Physical Variation

6.1 Introduction

The existence of a critical dissipation rate, above which a nonpremixed flame is extinguished, has
been known for decades. Recent advances in modeling have allowed the simulation of turbulent
nonpremixed flames that include local extinction as a consequence of the stochastic variation in
mixing rates. In this chapter we present the critical dissipation impulse magnitude that will lead to
extinction even if the mean dissipation rate is well below the criteria for a steady flame. This critical
impulse magnitude depends on the time-integrated excess dissipation rate, stoichiometric factors
and the form of the S-curve describing the steady-state flame. This criteria is evaluated in a diverse
set of flames including n-heptane, diluted n-heptane and CO/H2/N2 mixtures. A published paper
presents additional results, includes further discussion of the time scales over which this extinction
criterion is applicable, and further discusses the results in the context of prior literature [25].

A criteria for which turbulent flames are extinguished is key to predicting such diverse phe-
nomena as fire suppression and flame stabilization. While the theoretical basis for extinction of
an individual laminar nonpremixed flamelet (here used broadly to indicate a stoichiometric fluid
element where chemical reactions take place due to molecular mixing as opposed to the turbulent
flame which is a collection of flamelets) has been known for decades [41], the details of extinction
in turbulent flames have been coming to light more recently as stochastic simulations of localized
extinction and reignition are conducted [27, 57, 84]. The present report is a step toward quantifying
the frequency of turbulent flamelet extinction without the need to carry out a stochastic simulation.
To accomplish this, a criteria for extinction due to an unsteady variation in the mixing rate first
proposed in [27] is evaluated.

For an individual nonpremixed flamelet, extinction may occur if the rate of heat loss exceeds
the rate of chemical heat release. This rate of heat loss can be characterized by the scalar dissi-
pation rate, c , defined in terms of the gradient of the mixture fraction, Z, as c = 2D|—Z|2. All
dissipation rates in this report are evaluated at the stoichiometric point. The response of a flamelet
to a steady dissipation rate can be characterized using the well-known S-curve showing the max-
imum temperature as a function of dissipation rate. The upper and middle branches are shown in
Fig. 6.1 for boundary conditions considered in this work. The upper branch represents stably burn-
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Figure 6.1: The maximum flame temperature as a function of c for steady laminar flamelets with
three fuel mixtures (left). Possible trajectories for unsteady flamelets are shown relative to the
steady state by dotted arrows at right.

ing flames while the middle branch is unstable; flames will tend to move away from the middle
branch toward the upper or lower branches. Note that the S-curve abscissa in this report is c rather
than the Damköhler number, which is inversely proportional to c; using c along the abscissa al-
lows easier interpretations of changes in the mixing rate, but results in a reversed S-curve. Above
a critical dissipation rate, heat losses exceed heat-release rates and a steady flame cannot exist; this
point, cq, is associated with extinction for steady flames.

One problem that arises in the application of the S-curve describing steady flamelets is that the
instantaneous value of c varies with time in turbulent flows about whatever effective mean value
is determined by the large-scale mixing. The distribution of c can be approximated as log normal,
and for moderate to large Reynolds numbers c may vary over several orders of magnitude. In
direct numerical simulations, the local dissipation rate has been shown to vary over time scales
comparable to the Kolmogorov time scale [86], so that large fluctuations in c may occur over
short periods of time. The present report addresses how the magnitude and time scale of rapid
fluctuations in c determine whether or not extinction will occur.

A number of studies addressing the response of individual flames to unsteady mixing time
scales have identified the fact that flames are more resistant to extinction for high frequency or
short period mixing rate fluctuations. Ghoniem et al. [20] showed that by increasing the frequency
one can go to higher amplitude fluctuations before the flame is extinguished. Mauss et al. [40]
showed that, for a fixed peak dissipation rate, exceeding cq for a longer duration required a greater
subsequent reduction in the dissipation rate to prevent extinction. These two observations can be
coupled together in an extinction criteria first proposed in [27] and described in the subsequent
section.
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6.2 Method and Approach to Analyzing Results

For ease in interpretation of the results and to simplify the form of the equations, a simplified
version of the flamelet equations written in the mixture fraction coordinate is employed. While de-
tailed chemical kinetics and thermo chemistry (i.e. enthalpies) are retained, all transport properties
are assumed identical so that Lewis numbers are unity, and the species diffusion is presumed to
follow Fick’s Law so that the effect of gradients in the molecular weight on diffusion are ignored.
Simplified species and energy equations are

dYi

dt
=

c

2
d2Yi

dZ2 +
wi

r

(6.1)

dT
dt

=
c

2
d2T
dZ2 � c

2 Â
i

✓
1�

cp,i

cp

◆
dYi

dZ
dT
dZ

�Â
i

wihi

rcp
. (6.2)

Here Yi, wi, cp,i and hi are the mass fraction, production rate, specific heat and enthalpy, respec-
tively, of species i; r and cp are the mixture density and specific heats. The scalar dissipation rate,
c is allowed to vary in the mixture fraction coordinate with the standard counterflow configura-
tion form, c(Z) = c0 exp(�2[erfc�1(2Z)]2). These equations are evolved forward in time from
a steady-state initial condition using the FlameMaster code [56]. During the temporal evolution
the value of c0 is varied so that the stoichiometric dissipation rate follows either a square-shaped,
triangle-shaped or sinusoidal impulse with an initial magnitude c1 and a peak value of c2 as indi-
cated in Fig. 6.2. In order to determine cq, to define the shape of the S-curves in Fig. 6.1 and to
generate initial conditions for the transient flames, a series of steady flamelets are also computed
using continuation methods.

Computations are conducted using varied fuel mixtures to provide a wide range of parame-
ter space. Fuel mixtures employed are pure n-heptane, n-heptane diluted with nitrogen (50% by
mass) and a CO/H2/N2 mixture (55.4%/3%/41.6% by mass). The chemical-kinetic mechanisms
employed are available from the author and are similar to those described in [37, 24]. The present
results are insensitive to the mechanism.

Unsteady extinction results can be explained in terms of the S-curve [40]. Variations in c tend
to move the state away from the S-curve as depicted with dotted arrows in Fig. 6.3. An increase in
the dissipation rate above cq will result in the flame temperature dropping with time (segments 1
and 2 in Fig. 6.3). If the duration for which c > cq is sufficiently short, the subsequent reduction in
the dissipation rate leads to a flame state in between the upper and middle branches of the S-curve
and the flame, given sufficient time, returns to the steady state value on the upper branch (segments
3 and 4 in Fig. 6.3). Conversely, if the duration for which c > cq is sufficiently long, a reduction
in the dissipation rate will lead to a flame state below the middle branch, in which case the flame
temperature will continue to drop (segments 5 and 6 in Fig. 6.3). Though it is beyond the scope
of the present work, we note in passing that the steady-state middle branch only represents an
approximate dividing line because, particularly with detailed chemistry, the transient flame state
differs from that at steady-state.
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Figure 6.2: Temporal evolution of c and the region contained in the integral of X for square-shaped,
triangle-shaped and sinusoidal impulse forms.

In Ref. [27] a criteria was proposed for extinction when fluctuations in the dissipation rate ex-
ceed cq for a period in the course of turbulent flame evolution. This criteria is based on estimates
for the heat-release rate and heat-dissipation rate. The maximum heat-release rate can be approxi-
mated by the steady mixing rate at the quenching condition, equating the second and fourth terms
in the energy equation in Eq. 6.2

 

Â
i

wihi

rcp

!

max

⇡ �
cq

2
d2T
dZ2 . (6.3)

It is presumed that while cq is exceeded, but while the temperature is still above the middle branch,
heat release may continue at approximately this rate. The diffusive term can be estimated as
�cT Z�2

st (1 � Zst)�2 so that, for c > cq and temperatures above the middle branch, the rate of
change in the thermochemical state, represented by temperature, can be estimated (neglecting the
enthalpy flux for simplicity) as

dT
dt

=
c

2
d2T
dZ2 �

 

Â
i

wihi

rcp

!

max

⇡ �
(cq � c)

2
d2T
dZ2 ⇡

(cq � c)T
Z2

st(1�Zst)2 . (6.4)

This creates a plausible time scale for extinction. The time scale, the inverse of the right-hand side
of Eq. 6.4, is the exponential decay constant since the solution of Eq. 6.4 is of the form

T2 �T0

T1 �T0
= exp(�AX) (6.5)

where

X =

R
c>cq

(c � cq)dt

Z2
st(1�Zst)2 . (6.6)
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Figure 6.3: Possible trajectories for unsteady flamelets shown relative to the steady state by dotted
arrows.

Here A is a proportionality constant since Eq. 6.4 is only an approximate equality. A better ap-
proximation would involve a prediction of the reaction zone thickness as can be obtained through
asymptotic means, for example [41, 28]. Here T0 is the temperatures of the reactants, T1 the steady
flame temperature before the scalar dissipation rate rises and T2 the predicted unsteady flame tem-
perature after c is again less than cq. In the numerator of X the integral

R
c>cq

(cq � c)dt appears.
This is the integral over time of the excess dissipation above cq as indicated by the hatched region
in Fig 6.2. If the value of T2 predicted by Eq. 6.6 when c returns to its original value, c1, is below
the middle branch, then we expect the flame to be extinguished.

6.3 Results and Discussion

In order to evaluate Eq. 6.6 as an unsteady extinction criteria, unsteady simulations were performed
as described in the previous section. Using a bisection search algorithm, the critical value of X that
delineates the division between extinguished and non-extinguished flames, Xq, is identified as a
function of the initial dissipation rate, c1, and the maximum dissipation rate, c2, for the three
profiles indicated in Fig. 6.2 by varying the duration of the pulse. As an example of the evolution
of the thermochemical state, Fig. 6.4 shows the temperature and dissipation rate as a function of
time along with the temperature-dissipation phase plot for three pairs of simulations with durations
characterized by X somewhat above (dashed lines) and below Xq (solid lines). It is noted that a
square temporal profile for c results in virtually no change in temperature between c1 and c2 and
the solution moves well away from the stable S-curve solution (the duration of the transition is 1%
of the total impulse period). For a triangle (or sinusoidal) temporal profile, however, the magnitude
and period of the pulse determine whether or not the temperature follows the S-curve. For c2/cq
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not very large, the duration of the impulse for X near Xq is long and the gradual changes in c allow
the transient state to largely follow the S-curve (i.e. the middle panes of Fig. 6.4). For larger c2/cq
(lower panes of Fig. 6.4) the solution increasingly moves away from the S-curve.
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Figure 6.4: The temporal evolution of c and the temperature (left) and the temperature-dissipation
phase plot (right) for one square and two triangle-shaped dissipation impulses.
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The value of Xq is determined to within 1% for a wide range of c1/cq < 1, c2/cq > 1 and for
the three fuel mixtures indicated. These are plotted in Fig. 6.5, and a number of observation can
be made. For smaller c1/cq where the required reduction in the temperature to cross the middle
branch of the S-curve is greater, the magnitude of Xq is generally greater as predicted by Eq. 6.6.

For sinusoidal and triangle-shaped impulses, as c2/cq approaches unity the magnitude of of
Xq approaches the value for a flame near extinction (c1/cq ! 1). This occurs because the flame
has time to adapt to the near-extinction state as indicated in the middle panes of Fig. 6.4. Because
the change in c is rapid for square impulses, this is not observed in those curves. To quantify the
meaning of rapid versus gradual changes in the dissipation rate, one must compare dT/dt from
Eq. 6.4 with (dT/dc)(dc/dt). If the latter is small relative to the former, then the flame state
will follow the S-curve, until such a condition is violated (as when dT/dc ! �• at cq). As a
preliminary estimate of the significance of rapid fluctuations, we note that Yeung and cowork-
ers [86, 85] looked at the dynamics of flame surface straining using direct numerical simulations.
They observed that the integral time scales for variation in strain rates are only somewhat larger
than the Kolmogorov time scale; in Ref. [86] they indicate this is three times the Kolmogorov
scale. Therefore, we expect rapid fluctuations in the dissipation rate are typical in large Reynolds
number turbulence.

For rapid changes in c , as occurs for large c2/cq and for square profiles, the value of Xq be-
comes independent of the shape of the impulse and depends on the initial conditions. In this case,
we identify the magnitude of T1 and T2 appearing in Eq. 6.6 by reading from the appropriate S-
curve in Fig. 6.1 at the location c1 and normalize Xq by ln(T2 �T0)/(T1 �T0) giving the constant
of proportionality, A, in Eq. 6.6. This is plotted in Fig. 6.6. It is observed in Fig. 6.6 that for large
c2/cq the curves come together (for small c2/cq the change in c is gradual so that T1 should be
taken near extinction resulting in the convergence evident in Fig. 6.5) indicating that the relation-
ship in Eq. 6.6 is a suitable predictor of unsteady extinction criteria for large fluctuations in the
dissipation rate.

There is still some systematic variation in the value of A indicated in Fig. 6.6. In particular, as
c1/cq ! 1, the appropriate magnitude of A is larger. While space limitations prevent a graphical
demonstration, this occurs because the reaction rates are initially higher in flames with initially
high dissipation rates. The reaction rates are observed to transiently exceed the reaction rates at
cq leading to greater resistance to extinction than predicted in Eq. 6.6. This is a purely transient
phenomena occurring as the temperature remains above the steady-state temperature at cq (so that
the kinetic rates are still fast) and the high dissipation rates mix reactants more rapidly. This
phenomena will require further investigation.
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Figure 6.5: The critical value of X corresponding to extinction for various dissipation impulses.
Solid lines are sinusoidal, dashed lines are square-shaped and dash-dot lines are triangle-shaped
profiles.
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To clarify the variation of A in the limit of large c2/cq, the approximate limiting values are
plotted in Fig. 6.7. There, the variation in A as c1/cq ! 1 described in the previous paragraph is
clear. Furthermore, for n-heptane with and without nitrogen dilution, the curves directly coincide
indicating that the effect of dilution is captured. Conversely, the predicted value of A for the
CO/H2/N2 flames is observed to be substantially greater. As indicated in the discussion of Eq. 6.6,
the approximations, particular that for the heat loss, would best use a true measure of the reaction
zone thickness. Since the reaction zone thickness for hydrocarbon flames is generally less than
that for CO/H2 flames, the greater magnitude of A for the CO/H2/N2 flames is expected until a
better measure of the heat losses is provided. The better measure of the heat losses would be
�cT/[Zst(1 � Zst)e] where e is the reaction zone thickness in mixture fraction space, obtainable
from asymptotic analysis [41, 28].

6.4 Conclusion

A criteria indicating the magnitude of a scalar-dissipation impulse leading to extinction has been
investigated. The quantity X, involving the time-integrated excess dissipation over cq and appro-
priate stoichiometric factors, has been shown to provide a sufficient description of the heat losses
during a brief period where the dissipation reaches values much greater than cq so that, when cou-
pled with knowledge of the S-curve temperature-dissipation relationship, extinction can be reason-
ably well predicted. When the rate of change in dissipation is fast relative to the rate of response
of the temperature to changes in c , this criteria is independent of the profile of the dissipation im-
pulse, but does depend on the temperatures at the steady-state condition along the S-curve prior to
the impulse. When the dissipation rate changes gradually, the criteria is independent of the initial
steady-state conditions, but depends on the state along the S-curve near extinction or wherever the
rate of change in the dissipation rate becomes large. For initial and or maximum dissipation rates
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near cq, this criteria based on X slightly over predicts heat losses, and would thus predict extinction
too soon if not corrected. A further study with greater detail is available separately [25].
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Chapter 7

Development of Reacting Flow Capabilities
in Nalu

7.1 Low Mach Equation Set

The low Mach number equations are a subset of the fully compressible equations of motion (mo-
mentum, continuity and energy), admitting large variations in gas density while remaining acous-
tically incompressible. The low Mach number equations are preferred over the full compressible
equations for low speed flow problems as the accoustics are of little consequence to the over-
all simulation accuracy. The technique avoids the need to resolve fast-moving acoustic signals.
Derivations of the low Mach number equations can be found in found in Rehm and Baum, [60], or
Paolucci, [51]. A condensed version of the derivation can also be found in [14].

The equations are derived from the compressible equations using a perturbation expansion in
terms of the lower limit of the Mach number squared; hence the name. The asymptotic expansion
leads to a splitting of pressure into a spatially constant thermodynamic pressure and a locally
varying dynamic pressure. The dynamic pressure is decoupled from the thermodynamic state and
cannot propagate acoustic waves. The thermodynamic pressure is used in the equation of state and
to determine thermophysical properties. The thermodynamic pressure can vary in time and can be
calculated using a global energy balance.

7.1.1 Conservation of Mass

The continuity equation is always solved in the variable density form.

Z
∂ r̄

∂ t
dV +

Z
r̄ ũini dS = 0 (7.1)

Since Nalu uses equal-order interpolation (variables are collocated) stabilization is required. The
stabilization choice will be developed in the pressure stabilization section.
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7.1.2 Conservation of Momentum

The integral form of the Favre-filtered momentum equations used for turbulent transport are

Z
∂ r̄ ũi

∂ t
dV +

Z
r̄ ũiũ jn jdS +

Z
P̄nidS =

Z
t̄i jn jdS +

Z
tuiu jn jdS

+
Z

(r̄ �r�)gidV, (7.2)

where the turbulent stress tuiu j is defined as

tuiu j ⌘ �r̄(guiu j � ũiũ j). (7.3)

In a low Mach flow, as described in the low Mach theory section, the above pressure, P̄ is the
purturbation about the thermodynamic pressure, Pth. In a low speed compressible flow, i.e., flows
confinded to a closed domain with energy or mass addition in which the continuity equation has
been modifed to accomodate accoustics, this pressure is interpreted at the thermodynamic pressure
itself.

For LES, tuiu j in Equation 7.2 represents the subgrid stress tensor. The deviatoric part of the
subgrid stress tensor is defined as

t

D
uiu j

⌘ tuiu j �
1
3

tukukdi j

= tuiu j +
2
3

r̄q2
di j, (7.4)

where the subgrid turbulent kinetic energy is defined as q2 ⌘ 1
2(gukuk � ũkũk). The deviatoric part

of the subgrid stress tensor is then modeled similar to RANS closures as,

t

D
uiu j

= 2µt

✓
S̃i j �

1
3

S̃kkdi j

◆
. (7.5)

Substituting this into Equation 7.4 yields the modeled form of the full subgrid stress tensor

tuiu j = 2µt

✓
S̃i j �

1
3

S̃kkdi j

◆
� 2

3
r̄q2

di j. (7.6)

For low Mach-number flows, a vast majority of the turbulent kinetic energy is contained at
resolved scales. For this reason, the subgrid turbulent kinetic energy q2 will not be directly treated
and will instead be included in the pressure as an additional normal stress. The Favre-filtered
momentum equations then become

Z
∂ r̄ ũi

∂ t
dV +

Z
r̄ ũiũ jn jdS +

Z ✓
P̄+

2
3

r̄q2
◆

nidS =

Z
2(µ + µt)

✓
S̃i j �

1
3

S̃kkdi j

◆
n jdS +

Z
(r̄ �r�)gidV, (7.7)
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where LES closure models for the subgrid turbulent eddy viscosity µt are either the constant coef-
ficient Smagorinsky, WALE or the constant coefficient ksgs model (see the turbulence section).

7.1.3 Filtered Mixture Fraction

The optional quantity used to identify the chemical state is the mixture fraction, Z. While there
are many different definitions of the mixture fraction that have subtle variations that attempt to
capture effects like differential diffusion, they can all be interpreted as a local mass fraction of the
chemical elements that originated in the fuel stream. The mixture fraction is generally considered
to be a conserved scalar that varies between zero in the secondary stream and unity in the primary
stream and is transported in laminar flow by the equation,

∂rZ
∂ t

+
∂ruiZ

∂xi
=

∂

∂xi

✓
rD

∂Z
∂xi

◆
, (7.8)

where D is an effective molecular mass diffusivity. For some applications, the mixture fraction is
not conserved and a source term will apply. Many of these applications involve multiphase flow not
addressed here and the mixture-fraction source is associated with the interphase reactions. When
species diffusion coefficients are not equal, an effective source term also appears in Eq. 7.8, but
turbulent fluctuations act to reduce the effect of this, and it is ignored in the filtered equations [26].

Applying either temporal Favre filtering for RANS-based treatments or spatial Favre filtering
for LES-based treatments yields

Z
∂ r̄Z̃
∂ t

dV +
Z

r̄ ũ jZ̃n jdS = �
Z

tZu jn jdS +
Z

r̄D
∂ Z̃
∂x j

n jdS, (7.9)

where sub-filter correlations have been neglected in the molecular diffusive flux vector and the
turbulent diffusive flux vector is defined as

tZu j ⌘ r̄

⇣
gZu j � Z̃ũ j

⌘
. (7.10)

This sub-filter correlation is modeled in both RANS and LES closures with the gradient transport
approximation

tZu j ⇡ �r̄Dt
∂Z
∂x j

, (7.11)

where Dt is the turbulent mass diffusivity, modeled as r̄Dt = µt/Sct where µt is the modeled turbu-
lent viscosity from momentum transport and Sct is the turbulent Schmidt number. The molecular
mass diffusivity is then expressed similarly as r̄D = µ/Sc so that the final modeled form of the
filtered mixture fraction transport equation is

∂ r̄Z̃
∂ t

+
∂ r̄ ũiZ̃

∂xi
=

∂

∂xi

✓
µ

Sc
+

µt

Sct

◆
∂ Z̃
∂xi

�
. (7.12)

In integral form the mixture fraction transport equation is
Z

∂ r̄Z̃
∂ t

dV +
Z

r̄ ũiZ̃ni dS =
Z ✓

µ

Sc
+

µt

Sct

◆
∂ Z̃
∂xi

ni dS. (7.13)
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7.1.4 Conservation of Energy

The integral form of the Favre-filtered static enthalpy energy equation used for turbulent transport
is

Z
∂ r̄ h̃
∂ t

dV +
Z

r̄ h̃ũ jn jdS = �
Z

q̄ jn jdS �
Z

thu jn jdS �
Z

∂ q̄r
i

∂xi
dV

+
Z ✓

∂ P̄
∂ t

+ ũ j
∂ P̄
∂x j

◆
dV +

Z
ti j

∂ui

∂x j
dV. (7.14)

The above equation is derived by starting with the total internal energy equation, subtracting
the mechanical energy equation and enforcing the variable density continuity equation. Note that
the above equation includes possible source terms due to thermal radiatitive transport, viscouss
dissipation, and pressure work.

The simple Fickian diffusion velocity approximation is assumed, so that the mean diffusive
heat flux vector q̄ j is

q̄ j = �
"

µ

Pr
∂h
∂x j

� µ

Pr

K

Â
k=1

hk
∂Yk

∂x j

#
� µ

Sc

K

Â
k=1

hk
∂Yk

∂x j
. (7.15)

If Sc = Pr, i.e., unity Lewis number (Le = 1), then the diffusive heat flux vector simplifies to
q̄ j = � µ

Pr
∂ h̃
∂x j

. The viscous dissipation term is closed by

ti j
∂ui

∂x j
=

✓
(µ + µt)

✓
∂ ũi

∂x j
+

∂ ũ j

∂xi

◆
� 2

3

✓
r̄ k̃ + µt

∂ ũk

∂xk

◆
di j

◆
∂ ũi

∂x j

=


2µ S̃i j +2µt

✓
S̃i j �

1
3

S̃kkdi j

◆
� 2

3
r̄ k̃di j

�
∂ ũi

∂x j
. (7.16)

The turbulent diffusive flux vector thu j in Equation 7.14 is defined as

thu j ⌘ r̄

⇣
fhu j � h̃ũ j

⌘
. (7.17)

For RANS simulations, thu j represents the turbulent energy diffusive flux vector and is simplified
to the form thu j = rh00u00

j by substitution of the Favre decomposition of each variable. It is then
modeled by

thu j = rh00u00
j = � µt

Prt

∂ h̃
∂x j

, (7.18)
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where Prt is the turbulent Prandtl number and µt is the modeled turbulent eddy viscosity from
momentum closure. For LES, thu j represents the subgrid turbulent energy diffusive flux vector,
and is modeled in the same way as

thu j = � µt

Prt

∂ h̃
∂x j

, (7.19)

where Prt is the subgrid turbulent Prandtl number and µt is the modeled subgrid turbulent eddy
viscosity from momentum closure.

The resulting filtered and modeled turbulent energy equation for both RANS and LES is given
by,

Z
∂ r̄ h̃
∂ t

dV +
Z

r̄ h̃ũ jn jdS =
Z ✓

µ

Pr
+

µt

Prt

◆
∂ h̃
∂x j

n jdS �
Z

∂ q̄r
i

∂xi
dV

+
Z ✓

∂ P̄
∂ t

+ ũ j
∂ P̄
∂x j

◆
dV +

Z
ti j

∂u j

∂x j
dV. (7.20)

The turbulent Prandtl number must have the same value as the turbulent Schmidt number for
species transport to maintain unity Lewis number.

Review of Prandtl, Schmidt and Unity Lewis Number

For situations where a single diffusion coefficient is applicable (e.g., a binary gas system) the Lewis
number is defined as:

Le =
Sc
Pr

=
a

D
. (7.21)

If the diffusion rates of energy and mass are equal,

Sc = Pr and Le = 1. (7.22)

For completeness, the thermal diffusivity, Prandtl and Schmidt number are defined by,

a =
k

rcp
, (7.23)
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Pr =
cpµ

k

=
µ

ra

, (7.24)

and

Sc =
µ

rD
, (7.25)

where cp is the specific heat, k , is the thermal conductivity and a is the thermal diffusivity.

7.1.5 Multi-physics

The code base allows for multi-physcis coupling including congugate heat transfer, i.e., coupling
of fluid mechanics to a thermal heat conduction physics and coupling to a participating media
radiation physics. More detail can be found in [14]

7.2 Discretization

Nalu supports two discretizations: control volume finite element and (CVFEM) edge-based vertex
centered (EBVC). Each are finite volume forumations and each solve for the primitives are are each
considered vertex-based schemes. For large eddy simulation, a low dissipation skew symmetric
scheme has been developed (see subsequent section).

For generalized unstructured meshes that have poor quality, CVFEM has been shown to excell
in accuracy and robustness. This is mostly due to the inhearant accuracy limitation for the non-
orthogonal correction terms that appear in the diffusion term and pressure stabilization for the
EBVC scheme. For generalized unstructured meshes of decent quality, either scheme is ideal.
Finally, for highly structured meshes with substantail aspect ratios, the edge-based scheme is ideal.

In general, the edge-based scheme is at least two times faster per iteration than the element-
based scheme. For some classes of flows, it can be up to four times faster. However, due to the
lagged coupling between the projected nodal gradient equation and the dofs, on meshes with high
non-orthogonality, nonlinear residual convergence can be delayed.

The CVFEM scheme lends itself to promotion to higher order methods (greater than second
order) while the edge-based scheme is limited to spatially second order. More detail on the sup-
ported formulations with detailed description of the comparison of CVFEM low order, EBVC low
order and third order CVFEM can be found in [13].

Finally, time integration is managed thorugh an implicit Backward Euler (first order accurate)
and a BDF2 second order temporal accurate scheme.
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7.3 Low Dissipation Operators

In general, advection for both the edge and element-based scheme is identical with standard ex-
ception of the location of the integration points. The full advection term is simply written as,

ADV
f

=
Z

ru jfipA j = Â ṁfip, (7.26)

where f is ui, Z, h, etc.

The evaluation of fip defines the advection stabilization choice. In general, the advection
choice is a cell Peclet blending between higher order upwind (fupw) and a generalized unstabilized
central (Galerkin) operator, fgcds,

fip = hfupw +(1�h)fgcds. (7.27)

In the above equation, h is a cell Peclet blending, The generalized central operator can take on
a pure second order or psuedo fourth order form (see below). In general, a hybrid upwind factor,
g , can be used to ensure that no stabilization is added (h = 0) or that full upwind stabilization is
included (as will be shown, even with limiter functions). The hybrid upwind factor allows one
to modify the functional blending function; values of unity result in the normal blending function
response; values of zero yield a pure central operator, i.e., blending function of zero; values >>

unity result in a blending function value of unity, i.e., pure upwind. The constant A is implemented
as above with a value of 5. This value can not be changed via the input file.

The cell-Peclet number is computed for each sub-face in the element from the two adjacent left
(L) and right (R) nodes,

Pe = g

1
2 (uR,i +uL,i)(xR,i � xL,i)

n

. (7.28)

A dot-product is implied by repeated indices. The cell Peclet blending function is, therefore, the
following:

h =
Pe2

5+Pe2 . (7.29)

The upwind operator, fupw is computed based on a blending of the extrapolated state (using
the projected nodal gradient) and the linear interpolated state. Second or third order upwind is
provided based on the value of aupw blending

fupw = aupwf̃

L
upw +(1�aupw)fcds; ṁ > 0,

aupwf̃

R
upw +(1�aupw)fcds; ṁ < 0. (7.30)
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The extrapolated value based on the upwinded left (f L) or right (f R) state,

f̃

L
upw = f

L +dL
j

∂f

L

∂x j
,

f̃

R
upw = f

R �dR
j

∂f

R

∂x j
. (7.31)

The distance vectors are defined based on the distances between the L/R points and the integration
point (for both edge or element-based),

dL
j = xip

j � xL
j ,

dR
j = xR

j � xip
j . (7.32)

In the case of all transported quantities, a Van Leer limiter of the extrapolated value is supported
and can be activated withing the input file (using the solution options “limiter” specification).

Second order central is simply written as a linear combination of the nodal values,

fcds = ÂNip
k fk. (7.33)

where Nip
k is either evaluated at the subcontrol surface or edge midpoint. In the case of the edge-

based scheme, the edge midpoint evaluation provides for a skew symmetric form of the operator.

The generalized central difference operator is provided by blending with the extrapolated val-
ues and second order Galerkin,

fgcds =
1
2
�
m̂f

L
upw + m̂f

R
upw
�
, (7.34)

where,

m̂f

L
upw = af̃

L
upw +(1�a)fcds,

m̂f

R
upw = af̃

R
upw +(1�a)fcds. (7.35)

The value of a provides the type of psuedo fourth order stencil and is specified in the user input
file.

The above set of advection operators can be used to define an idealized one dimensional stencil
denoted by (i�2, i�1, i, i+1, i+2), where i represents the particular row for the given transported
variable. Below, in Table 7.1 the stencil can be noted for each value of a and aupw.

It is noted that by varying these numerical parameters, both high quality, low dissipation oper-
ators suitable for LES usage or limited, monotonic operators suitable for RANS modeling can be
accomodated.
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Table 7.1: Edge-based stencils for various combinations of a and aupw

i�2 i�1 i i+1 i+2 a aupw
0 �1

2 0 +1
2 0 0 n/a

+1
8 �6

8 0 +6
8 �1

8
1
2 n/a

+ 1
12 � 8

12 0 + 8
12 � 1

12
2
3 n/a

+1
4 �5

4 +3
4 +1

4 0 ṁ > 0 1
0 �1

4 �3
4 +5

4 �1
4 ṁ < 0 1

+1
6 �6

6 +3
6 +2

6 0 ṁ > 0 1
2

0 �2
6 �3

6 +6
6 �1

6 ṁ < 0 1
2

7.4 Reacting Flow

Reacting flow in the code base is provided through three avenues including infinitely-fast Burke-
Schumann chemistry, Strained, Steady Laminar-Flamelet model (SSLF) and finite-rate chemistry.
Two of the available approaches for reacting flows, Burke-Schumann chemistry and SSLF, rely
on the separation of time scales between fluid mixing and chemical reactions and area appropriate
when chemical mixing is the limiting process. The third approach with finite-rate chemistry is
appropriate when chemistry is the limiting process as in premixed systems. Although implemented,
this project did not fully exercise the reacting flow capability.

7.4.1 Infinitely Fast Burke-Schumann Chemistry

In gas-phase systems Pr and Sc are of order unity for most species. If combinations of species can
be taken that have similar transport properties and also represent conserved quantities, like element
conservation, significant simplifications arise. If the chemical reactions occuring can be considered
to be inifinitely fast, then greater simplifications arise. This section addresses the limit where the
transport properties are sufficiently similar and the chemistry is represented by infinitely fast and
irreversible reactions. In this limit, the mass fractions can all be expressed as linear functions of the
mixture fraction between the two source streams except for a slope change where reactions occur.
The next section addresses the limit of similar transport properties and either equilibrium (fast and
reversible) chemistry or chemistry limited by a mixing time scale.

For the purposes of demonstration we make the assumption that the fuel is a hydrocarbon for
which the global reaction is

CmHn +nO2O2 ! mCO2 +(n/2)H2O (7.36)

where nO2 = m + n/4 is the stoichiometric coefficient for the oxidizer relative to the fuel. Linear
combinations of the form

b =
YO2

nO2WO2

� YCmHn

WCmHn
or bCO2 =

YCO2

mWCO2

� YCmHn

WCmHn
(7.37)
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are conserved scalars. The mixture fraction is generally defined to be that conserved scalar that is
normalized to unity in the fuel stream and zero in the oxidizer stream (denoted by subscripts 1 and
0, respectively) so that

Z =
b �b0

b1 �b0
(7.38)

is the standard definition of the mixture fraction for any linear combination b that defines a con-
served scalar. The flame is located at a fixed value of the mixture fraction, the stoichiometric
mixture fraction, Zst , where b = 0. From Eq. 7.38 using b from Eq. 7.37 one obtains

Zst =


1� b1

b0

��1
=


1+

nO2YCmHn,1WO2

YO2,0WCmHn

��1
. (7.39)

In the limit of irreversible, infinitely-fast, single-step kinetics, fuel and oxidizer do not coexist
and the reaction is a Dirac delta function at Zst , the profiles are linear except for this point. These
relations are different for rich and lean mixtures. For Z  Zst one obtains

YCmHn = 0
YO2 = YO2,0(Zst �Z) (7.40)

and for Z � Zst one obtains

YCmHn = YCmHn,1(Z �Zst)/(1�Zst)

YO2 = 0. (7.41)

The mass fractions of CO2 and H2O can then be expressed as

YCO2 = m(WCO2/WCnHm)(YCmHn,1Z �YCmHn)

YH2O = (n/2)(WH2O/WCnHm)(YCmHn,1Z �YCmHn) (7.42)

Initially and in adiabatic systems the enthalpy will also be linear in the mixture fraction

h = h0 +(h1 �h0)Z (7.43)

although participating media radiation and wall heat transfer alter this relation. The relationship
between the temperature and enthalpy is

h = Â
i

Yi(Z)hi(T ) (7.44)

where h is the enthalpy as evolved by the fluids solve as per Eq. 7.14 (not necessarily adiabatic)
and

hi(T ) = h0
i +

Z T

T 0
cp,idT (7.45)
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splits the enthalpy into a reference chemical enthalpy and a sensible enthalpy where the super-
script 0 indicates properties evaluated at a reference temperature, T 0. The fluid solve evolves the
enthalpy, but since it is typically easier to express boundary conditions in terms of the temperature,
the initial adiabatic enthalpy values can be determined from direct evaluation of Eq. 7.44. The
temperature is obtained by nonlinear solution of this same equation given the enthalpy field from
the fluids solve. Relations such as these translate the unknown space from (~Y ,h) into a need for
simply (Z,h). Similar relations will be described later for more sophisticated treatments.

The mixture molecular mass can be expressed in terms of the species molar masses, Wi, as

W̄ =

 

Â
i

Yi

Wi

!�1

(7.46)

and this is used to obtain the density

r =
pW̄
RT

(7.47)

where p is the pressure and R is the ideal gas constant. There is a nonlinearity in the expression
for the mixture molecular mass that can be significant if there are strong molar mass differences.

7.4.2 Tabulated State Variables

For equilibrium or strained laminar flamelet models (SLFM) characterized by a mixing rate, Nalu
takes advantage of tabulated state variables where the tabulation can be a function of the mixture
fraction, the enthalpy and the scalar dissipation rate, which provides the mixing time scale. These
state relations are generated externally and stored in HDF5 tables that Nalu reads. Table generation
can be performed using the Sierra/Thermal-Fluids code tabular_props. Inputs for the table with
the SLFM come from solution of the flamelet equations described in the following subsection; the
output is filtered in the tabulation process to provide the quantities evolved in LES as described
afterward.

The Flamelet Equations

The species conservation equations can be transformed in several ways [82, 34, 53] to obtain a set
of equations for which the independent spatial variables are replaced by an independent mixture
fraction variable. The resulting transformed equation is

drYi

dt
� rc

2
d2Yi

dZ2 = Wi Â
j

ni, jw j(~Y ,T ). (7.48)

where c = 2DZ|—Z|2 is the scalar dissipation rate. Similarly, an energy equation can be written

drcpT
dt

�
rcpc

2
d2T
dZ2 �

"
dcp

dZ
+Â

i
(cp � cp,i)

dYi

dZ

#
dT
dZ

= �Â
i

Wihi Â
j

ni, jw j(~Y ,T ). (7.49)
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The primary advantage of this form of the equations is that the stiff reacting flow problem is
reduced to a lower dimensional space. The connection to the fluid mixing is through the scalar
dissipation rate, c = 2D|—Z|, and the fluid solve evolves only those variables that evolve over the
time scales of the flow, typically the filtered mixture fraction and enthalpy.

Tables are generated by solving Eqs. 7.48 and 7.49 for a range of boundary conditions and
c , and the resulting solutions are converted into multidimensional HDF5 table format using tabu-
lar_props.

The scalar dissipation rate varies across the mixture fraction range, and flamelets are tabulated
using a reference value, c0, that is usually the stoichiometric dissipation rate, and a functional form
in the mixture fraction coordinate, F

c

(Z). A functional form often employed is

F
c

(Z) = exp
�
�2[erfc�1(2Z)]2

�
(7.50)

that corresponds to the (constant density) counterflow configuration. Given c0, the scalar dissipa-
tion profile in the Z coordinate is

c(Z) = c0
F

c

(Z)

F
c

(Z0)
. (7.51)

Filtered variables

In turbulent simulations, a Favre filtered form of the governing equations is evolved. A Favre-
filtered quantity is represented by f̃ ⌘ rf/r̄ , and Favre-filtered variables in the flamelet library
must be calculated. This is performed by convoluting the variables with a presumed PDF for the
mixture fraction. Such a convolution can be costly and therefore filtered values will be precom-
puted and stored in another flamelet library. Filtering the variables in the flamelet library takes the
form

f̃(Z̃,

fZ002
,c0, ...) =

R 1
0 r(Z,c0, ...)fT (Z,c0, ...) PZ(Z; Z̃,

fZ002)dZ
R 1

0 r(Z,c0, ...) PZ(Z; Z̃,

fZ002)dZ
. (7.52)

Here the elipsis refers to the list of any other independent variables and it is understood that
these can be expressed as function of the filtered variables evolved by the fluid region as c0 =

cst(Z̃,

fZ002
, c̃, ...).

The independent variables for such a library would include Z̃ and fZ002, which would replace
Z in the original library. The remainder of the independent variables would remain the same (i.e.
c0). The latter greatly facilitates the maintenance of the table as an orthogonal hypercube since
parameterizing in terms of moments of, for example, c could result in an oddly shaped, non-
orthogonal table. Instead c̃ is computed as an output of the filtered table. Since the fluid region
evolves (or knows how to find) c̃ , there is a reverse translation to get variables like cst in which
the library is parameterized described below.
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Accessing Flamelet Libraries

As described above, the flamelet library is generated with independent variables being filtered
quantities. The independent variables Z̃ and fZ002 correspond to table coordinates in a straightfor-
ward manner. The table coordinate associated with the variance is scaled by (1� Z̃)Z̃ that gives the
upper bound for the variance to provide a structured range of values for that table dimension. In
order to generate orthogonal and structured tables, some independent variables like c are tabulated
using reference values, c0. The mapping from the filtered c̃ to c0 is done by taking advantage of
the known function, F

c

(Z). The filtered value of this function is also tabulated and the reference
dissipation rate is obtained from

c0(Z̃,

fZ002
, c̃) = c̃

F
c

(Z0)

fF
c

(Z̃,

fZ002)
. (7.53)

This c0 is the resulting independent table coordinate in the dissipation direction.
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Chapter 8

Guru: A UQ study management framework

8.1 Introduction

Guru provides tools for constructing, maintaining, and analyzing uncertainty quanitfication (UQ)
studies, aimed to support common UQ workflows, reduce analyst effort, and enable more complex
studies. It is written purely in Python and requires only a stable build of Python 2.6 or 2.7 for
installation; there are no mandatory third-party dependencies.

In its current form, Guru’s public interface is the guru command-line program. The plan is to
launch the next minor version of the framework with a public application program interface (API)
in Python. Guru is written purely in Python and adopts the standard packaging and distribution
model for a third-party Python package, including a setup script, setup.py, that handles building
and installing.
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8.2 Installation

After aquiring a guru-vX.X.X.tar.gz archive, we prepare for installation with the following com-
mands (we are using a Bash shell hereforth):

$ tar zxvf guru-v0.1.tar.gz # unpack the source package
$ cd guru-v0.1 # move into the source pacakge

Basic Installation

Building and installing Guru can be done in one command:
$ python setup.py install # install guru!

Installing Locally

However, if we do not have permission to build or install Guru as a global package (this is often
the case with an account on a shared computing resources) or prefer not to, we can utilize any one
of the alternative methods that can be found in Python’s official, web-accessible documentation for
installing Python modules. Our preferred alternative is to install with the --user option.

$ python setup.py install --user

When installed locally, the command-line program is installed into a subdirectory of site.USER_BASE
(see interactive python session below) and the framework to site.USER_SIT E. To ensure access to
these resources, we append the former directory to the PATH environmental variable and the latter
to PYTHONPATH, within our startup script (for a Bash shell, use either .bash_profile or .bashrc).

$ python
>> import site
>> # Append the below to PATH
>> print(site.USER_BASE + ’/bin’)
/path/to/local/bin
>> # Append the below to PYTHONPATH
>> print(site.USER_SITE)
/path/to/local/lib/python/site-packages

8.3 The Environment

Upon initialization with a study, Guru creates a new subdirectory named .guru directly underneath
the study’s top-level directory (referred to as study root hereafter). The study root and all its sub-
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directories, regardless whether created before or after initialization, are provided a namespace,
a container for mapping names to values (i.e. variables). Each namespace is dynamic – we can
(re-)declare and delete variables as the study progresses – and persistant – the state of a study’s en-
vironment is saved within the study’s .guru directory as a pickled Python dictionary. Furthermore,
a hierarchal relationship exists between a directory’s namespace and its parent directory. Working
upwards and terminating at the study root, Guru searches this hierarchy to resolve name-to-value
lookups, returning the most immediate value mapped to the target name. The study root’s names-
pace is refered to as the global namespace since all names mapped here could resolve anywhere
within the study.

Figure 8.1: Example of Guru environment

For example, take the directory tree described in figure 8.1. In this case, the study root is mystudy,
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and we’ve assigned the value ’/path/to/script.py’ to the name ’executable’ in the global namespace.
Also, the names ’x’ and ’y’ are each mapped to different values in workdir.1 and workdir.2’s
local namespaces, forming some sense of a parametric study. Refering back to ’executable’, A
name-to-value loopkup for this name within any subdirectory of the study (e.g. the data directory
underneath workdir.1) would always yield ’/path/to/script.py’ defined at the global namespace,
the most immediate ancestor with a mapping to that key, making ’executable’ a de facto study
constant. The value of the names ’x’ and ’y’ depend on which immediate subdirectory of the
study root – workdir.1 or workdir.2 – we are under.

Referencing the Environment

Guru utilizes the environment to perform preprocessing tasks.

8.4 The Command-Line Tool

In the usage examples below, we construct and perform a few management tasks for the study
defined in section 8.3. The only setup needed is to create the mystudy directory, which, for this
example, will be underneath our home directory (⇠).

$ # current path: ~
$ mkdir mystudy && cd mystudy
$ # current path: ~/mystudy

8.4.1 guru init

We initilize Guru with the subcommand guru init. This creates a .guru directory inside the current
directory.

$ # current path: ~/mystudy
$ guru init
Initialized Guru repository in ~/mystudy/.guru.

8.4.2 guru setpars

We now want to create the workdir.1 and workdir.2 directories and appropriately set the ’x’ and
’y’ values inside each directory’s namespace as shown in Figure 8.1. guru setpars can help with
both tasks. Below is the general usage of this command:

$ guru setpars [OPTIONS] inputfile pattern [pattern ...]
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The Input File

The input file is where we define the study’s parameter space. This file should contain a table of (in
general) m rows by n columns – each column corresponds to a parameter, and each row, consisting
of n values (one for each parameter), holds the values of the parameters for one directory.

The first line may contain the parameter names. Alternatively, the parameter names can be passed
through the command-line with the �n/��name option. One of these two methods for naming
parameters must be used (we recommend the former as it also serves as a method of documen-
taion).

For our example, we’ll name our input file pars.in and place the text below inside it – lines that
start with ’#’ are considered comments and are ignored.

# file: ~/mystudy/pars.in
x y
1.3 4.7
1.8 5.3

Pattern

The second argument is the pattern – or patterns – for naming the directories associated to each
row.
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Chapter 9

Conclusion

This report has described several activities undertaken to develop UQ-based calibration methods
for LES models and make these methods more accessible for complex flows via open source soft-
ware. When taken as a whole, several important conclusions can be drawn. The first set of con-
clusions come in the form of new capabilities which have been developed and tested in the course
of this work. Primary amongst them is that engineering LES models can be calibrated using high-
fidelity simulation data. Importantly, the LES calibration process is more difficult than many other
calibration processes because the models must encompass the range of turbulent fluctuations and
the quantities of interest are often non-smooth. This report describes methods to overcome these
challenges. Complementary to the conclusion that LES can be calibrated is the conclusion that
forward propagation of uncertainty through LES can also be performed. As such, the impact of
uncertainties at the modeling level on engineering quantities of interest can be determined. In terms
of innovations, the final conclusion is that mesh and numerical method uncertainty are often more
significant than model uncertainty, and new ways to quantify them have begun to be developed.

In addition to the positive conclusions mentioned above, there is also a significant negative
conclusion that has been reached: model form error for LES must be captured for simulations
to be predictive. One example is that most LES models are strictly dissipative in nature, but as
meshes are coarsened, it is known that the amount of backscatter of turbulent energy increases. It
is hypothesized that models which cannot represent backscatter will have high errors in predicting
certainty quantities, for example the location and intensity of the near-wall peak in streamwise
fluctuations. Further, because mesh changes must be accounted for in the LES models, existing
approaches to solution verification using mesh refinement are inappropriate. Methods to determine
innovative approaches to model formulation would be needed to have any chance at overcoming
these challenges.

The final set of conclusions from this work come in the arena of open source software develop-
ment. In order to successfully collaboration with external organizations, it is necessary for Sandia
to have codes and support packages which are amenable to research and can be fully examined
by outside partners. To faciliate these multi-institutional efforts, this work has significantly added
to the capabilities of the Nalu low-Mach number flow solver. It as been shown to be accurate on
unstructured meshes and scale well on large numbers of processors. New capabilities have also
been added for modeling reacting flows of interest to industry. This work has also demonstrated the
ability to manage the large, coordinated sampling process required for UQ. Studies can be created
and executed much more easily than previously possible, as well as monitored and altered while
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running to ensure the needed data is obtained.

As an overall conclusion, many steps have been taken towards realizing the goal of engineering
LES with quantified cost versus accuracy for flows of technological interest. Calibration and uncer-
tainty propagation methods suitable for engineering LES have been developed and demonstrated
in a variety of canonical flows. Open source software has been created to support collaborations
between Sandia and industry on problems of mutual interest. Finally, the next research steps have
been identified that are necessary to obtaining the overall goal to improve engineering when turbu-
lent flows are present.
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